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Abstract

Background: Scientists have been trying to understand the molecular mechanisms of diseases to design preventive and
therapeutic strategies for a long time. For some diseases, it has become evident that it is not enough to obtain a catalogue
of the disease-related genes but to uncover how disruptions of molecular networks in the cell give rise to disease
phenotypes. Moreover, with the unprecedented wealth of information available, even obtaining such catalogue is
extremely difficult.

Principal Findings: We developed a comprehensive gene-disease association database by integrating associations from
several sources that cover different biomedical aspects of diseases. In particular, we focus on the current knowledge of
human genetic diseases including mendelian, complex and environmental diseases. To assess the concept of modularity of
human diseases, we performed a systematic study of the emergent properties of human gene-disease networks by means
of network topology and functional annotation analysis. The results indicate a highly shared genetic origin of human
diseases and show that for most diseases, including mendelian, complex and environmental diseases, functional modules
exist. Moreover, a core set of biological pathways is found to be associated with most human diseases. We obtained similar
results when studying clusters of diseases, suggesting that related diseases might arise due to dysfunction of common
biological processes in the cell.

Conclusions: For the first time, we include mendelian, complex and environmental diseases in an integrated gene-disease
association database and show that the concept of modularity applies for all of them. We furthermore provide a functional
analysis of disease-related modules providing important new biological insights, which might not be discovered when
considering each of the gene-disease association repositories independently. Hence, we present a suitable framework for
the study of how genetic and environmental factors, such as drugs, contribute to diseases.

Availability: The gene-disease networks used in this study and part of the analysis are available at http://ibi.imim.es/
DisGeNET/DisGeNETweb.html#Download.
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Introduction

For many years, scientists have been trying to understand the

molecular and physiopathological mechanisms of diseases in order

to design new preventive and therapeutic strategies. The

combination of experimental and computational methods has

led to the discovery of disease-related genes [1,2]. A well-known

example is Phenylketonuria, where the function of the gene

encoding the PAH enzyme was studied with respect to the

mechanism of the disease [3]. However, we are still far from fully

understanding disease causation, especially regarding complex

diseases such as cancer [2]. Even for mendelian diseases this is not

fully achieved because phenotypic outcome cannot be predicted

solely based on the genotype [3]. It has become evident, that many

human diseases cannot be attributed to malfunction of single genes

but arise due to complex interactions among multiple genetic

variants [4]. Moreover, influences of environmental factors,

infectious agents or drugs have to be considered when studying

the occurrence and evolution of a disease. In complex diseases,

alterations in several genes can make subtle contributions to the
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susceptibility of a particular individual. At the end of the day, how

a disease is caused and thus how it can be treated can only be

studied on the basis of the entire body of knowledge including all

genes that are associated with the disease and their interactions

through biological pathways. However, with the unprecedented

wealth of information available, it is extremely difficult to obtain a

complete picture of the genetic basis of diseases. In order to obtain

such a complete picture, data integration from different sources is

required. This is of special interest considering the fact that

individual researchers are often restricted to so called knowledge

pockets [5] covering only a small fraction of all available

knowledge that is spread all over the literature or various

databases. This fragmentation of information clearly hampers

our understanding of the molecular processes underlying human

diseases.

In the 60s, Dr. McKusick, the initiator of the Online Mendelian

Inheritance in Man (OMIM) database, started collecting infor-

mation about genes and their association to diseases first as a book

and later as a database. OMIM has become a highly popular

source in medical genetics [6]. It traditionally focused on

mendelian diseases and later started to include complex diseases

as well. In the last years, other databases have been built, among

them the Pharmacogenomics Knowledge Base (PHARMGKB)

specialized on the knowledge about genes that are involved in

modulating drug response [7] or the Comparative Toxicoge-

nomics Database (CTD) focused on the effect of environmental

chemicals on human disease [8]. Each of the databases focuses on

different aspects of phenotype-genotype relationships. However,

due to the fast increase of literature in the life science domain, no

one (not even expert curators of such databases) can keep track of

the relevant knowledge that is regularly published [5]. Here, text-

mining has evolved as a useful tool to automatically extract the

information about the relationships between biomedical entities

reported in the literature (for a recent overview see [9]). In this

work we developed a comprehensive database of human gene-

disease associations by integrating both, information from different

databases and from literature, in order to bridge the gaps between

the aforementioned knowledge pockets. The resulting database

(DisGeNET database) comprises the whole spectrum of human

diseases with genetic origin, including mendelian, complex and

environmental diseases, and represents, to the best of our

knowledge, the most complete view on human gene-disease

associations that is currently publicly available.

Many phenotypically similar diseases are caused by functionally

related genes, such as Stickler, Marshall and OSMED syndromes

[10,11,12], or several forms of human ataxias [13]. Hence, many

diseases are caused by dysfunction of so-called functional modules

[13,14,15,16]. Functional modules can be defined as a group of

cellular components and their interactions that carry out a specific

biological function [17]. These functional modules can be either

physically constrained like the ribosome or spread over the cell like

a signal transduction pathway. Alterations in the individual

components of a specific functional module can result in similar

disease phenotypes. Accordingly, several studies proposed the

concept of modularity for human genetic diseases taking

malformation syndromes as examples [18,19,20].

The concept of modularity of human diseases is the basic

assumption of several methods for the identification and

prioritization of candidate disease genes [2]. Surprisingly, the

concept of modularity of human diseases has not been evaluated

systematically for all the diseases, except for the ones available at

OMIM (see [21] for a recent review) and individually for some

diseases (see below). Moreover, while the concept of modularity

proved to be useful when studying mendelian or oligogenic traits,

there is still limited evidence for its applicability for complex traits

[20]. Most of the current approaches to identify disease relevant

modules focus on individual diseases [13,14,15,16]. A different

strategy was proposed by [22], who performed a global analysis of

a human gene-disease associations based on the OMIM database

to show that gene products related to the same disease have a

higher likelihood to physically interact [22].

In this article, we pick up the concept of modularity of human

genetic diseases with the aim of assessing it for the whole spectrum

of diseases with genetic origin, which had not been studied before.

For this purpose we use networks, which allow the representation

of the relationships between biomedical entities [22,23,24] and the

subsequent analysis of emergent properties [25]. It has been

observed that topological properties of biological networks differ

from those in random networks [26]. Moreover, it has been shown

how cluster analysis of protein-protein interaction networks can be

used to identify functional modules [23,27]. Hence, we use

topological and functional analysis of gene-disease association

networks to assess the modularity of mendelian, complex and

environmental diseases. Our results indicate that for most human

diseases functional modules do exist. This is also observed for

groups of diseases sharing gene associations. Moreover, our results

point out that most human diseases are associated with more than

one biological process. This contrasts with previous observations

based on OMIM data. We show in several case studies how the

network representation of human genetic diseases and the adjacent

detection of functional modules can be used not only to shed light

on the molecular basis of human diseases but also to gain a better

understanding of the influence of environmental factors, including

drugs, on human health. Moreover, our analysis confirms the need

of integrating human gene-disease associations from various

sources. To enforce research in this field, we make all gene-

disease networks publicly available as SQLite database for

computational access, as well as through DisGeNET, a plugin

for Cytoscape [28] to access and analyze our data.

Results and Discussion

Topological network analysis
Previous work has shown that topological network analysis of

gene-disease associations uncovers important properties of the

nature of mendelian diseases [22]. We used four different bipartite

networks called OMIM, CURATED, LHGDN and ALL (see

Methods) to study human diseases at a global scale, including

mendelian, complex and environmental diseases. By comparing the

four networks we show that our integration effort results in a huge

increase in coverage of (i) diseases, (ii) genes and (iii) their

associations compared to the individual data sources (see Fig. S2).

The overlap among databases is surprisingly small (see Fig. S3)

confirming the existence of the aforementioned knowledge pockets

and highlighting the need of integrating different data sources. We

demonstrate how the integration can close knowledge gaps in Case

study 2 (section Case studies). Here, the association between MITF,

a transcription factor regulating the expression of the TYR gene,

and Melanoma [29,30] was not found in any of the curated

databases but was present in the text-mining derived network. The

more data sources are considered the denser the networks become,

indicating that many more diseases share genetic origin than

reflected in a single source (Fig. 1). In OMIM, most diseases are

associated with few genes. Contrasting, in the other networks most

diseases are part of a large connected component that increases

noticeably when integrating more data. Concomitantly the number

of diseases associated with only one gene decreases (see curly

brackets in Fig. 1) suggesting that most diseases are associated with
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more than one gene, even for mendelian diseases. Note that this is

already observed in the network CURATED. Previous studies have

reported that for some mendelian disorders, such as Phenylketon-

uria, the observed phenotype is the result of the combined effect of a

primary gene and other genes that act as modifiers [3,31]. Our

results indicate that the same phenomenon might be in place for

other mendelian disorders. In addition, our results support the

hypothesis that the distinction between mendelian and multiple

gene disorders is rather artificial and that the influence of several

genes, including the so-called modifier genes, should be studied in

more detail for mendelian disorders [3,31].

We furthermore show that the degree distributions of diseases

and genes are different from the degree distribution of random

networks, but none of them follows a power law distribution (see

Fig. S5). Although many early studies about the topology of

biological networks proposed power-law behavior, recent re-

evaluations indicate that this is not always the case and other

models need to be considered [32,33]. Nevertheless, there are two

main trends visible. Both, the number of hubs and the average

degree size increase dramatically due to the integration process.

For the gene nodes, the average degree ranges from 1.6 in OMIM

to 5.6 in ALL and for the disease nodes, from 1.5 in OMIM to

10.1 in ALL (see Fig. S5). The degree of a disease node represents

the number of associated genes and hence can be used as a

measure for the locus heterogeneity of the disease. Overall, there is

a dramatic increase in the maximum locus heterogeneity. With

respect to the genes, the increase in the node degree is less

dramatic but still visible (see Fig. S5).

To study the diseases and disease-related genes in more detail,

we also generated gene and disease centric views of the data by

projecting the bipartite gene-disease networks to monopartite

networks. Similarly to the observations in the bipartite networks,

the node degrees increase dramatically when integrating more

data. All in all, our results suggest a much higher level of

interrelation of human diseases than observed by solely consider-

ing a single data source (e.g. OMIM).

In summary, the network analysis of our integrated database

points out that data integration is needed to obtain a comprehen-

sive view of the genetic landscape of human diseases and that the

genetic origin of mendelian, complex and environmental diseases

is much more common than expected.

Functional network analysis
A. Functional analysis at the level of individual

diseases. Several studies based on the OMIM database

indicated that for diseases with high locus heterogeneity the

associated genes are involved in the same biological process,

supporting the concept of functional modules associated with

disease [22,34,35]. This concept of modularity is often assumed to

be valid for all human diseases; however it has not been tested

before for monogenic, complex and environmental diseases in a

systematic manner. The DisGeNET database represents an

appropriate resource to perform such an evaluation. Thus, we

wanted to assess if the disease-related genes in our integrated data

set were involved in the same biological processes. In other words,

we wanted to study if the concept of modularity applies to the

whole spectrum of human genetic diseases. For this purpose, we

calculated pathway homogeneity with the following average

values: 0.77 (sd 0.26) in OMIM, 0.67 (sd 0.27) in CURATED,

0.56 (sd 0.24) in LHGDN and 0.59 (sd 0.25) in ALL. Interestingly,

in comparison to the OMIM dataset, the homogeneity values

decreased for the larger networks (CURATED, LHGDN, ALL).

To assess if the decrease of homogeneity values results from the

integration effort, we studied the dependency of homogeneity

Figure 1. Cytoscape screenshot depicting the four gene-disease networks. Gene (blue) and disease (magenta) nodes are connected by
edges in different colors corresponding to the type of association in our gene-disease association ontology. Grey represents Marker association, red
denotes GeneticVariation, blue corresponds to Therapeutic class, green to RegulatoryModification.
doi:10.1371/journal.pone.0020284.g001
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values on the number of associated genes. Interestingly, for all data

sources, even for OMIM, the homogeneity decreases with

increasing number of associated gene products (r = 20.25) (see

Fig. 2). Nevertheless, homogeneity values are significantly higher

than for random controls (see Fig. 2), indicating that genes related

to the same disease are more likely to be involved in the same

biological pathways than randomly selected disease genes. For

instance, in CURATED, diseases with two to five annotated gene

products have an average pathway homogeneity of 0.75 (sd 0.26),

suggesting that on average 75% of the gene products are

annotated to the same pathway, while this value decreases to

0.38 (sd 0.15) if 50 to 100 gene products are annotated to the

disease (see Fig. 2). For diseases with two to five annotated gene

products, approximately 70% of them participate in the same

pathway for all data sources. On the other hand, for diseases with

more than 10 gene products annotated, it is more likely that more

than one pathway is involved. Moreover, it is striking that

although the text-mining derived network is very dense with an

average of 18.7 genes per disease, the homogeneity values still

differ significantly from random, with values comparable to the

ones in CURATED. The observed decrease of homogeneity was

observed for all databases including OMIM suggesting that it is

not related to the integration effort but arises due to increased

locus heterogeneity of diseases. This observation should be taken

into account in future studies of genetic diseases.

Strikingly for all datasets the homogeneity values differ

significantly from random controls supporting that for most

diseases functional modules exist. Thus, the concept of modularity

is observed for mendelian diseases, in agreement with previous

reports [13,18,22,34,35], but also for complex and environmental

diseases. Moreover, the analysis shows that a core set of biological

pathways is associated with most human diseases. Similar

observations were reported for different cancer types, such as for

Pancreatic Cancer [14] or Glioblastoma [36]. Our results show

that this is also the case for the diseases present in DisGeNET.

Similar results were recently reported by [37] showing on average

12 pathways associated with a disease, using a database based on

co-occurrence of genes and diseases in the literature.

B. Functional analysis at the cluster level
B.1. Functional analysis of disease clusters. We applied

the MCL graph-clustering algorithm (see Methods) to identify

highly connected units, so called clusters, in the disease projection

networks and then tested if the disease clusters are associated with

functionally relevant modules. For this purpose, we determined if

the genes associated with the disease clusters are more likely to

participate in the same biological processes than randomly selected

genes by calculating pathway homogeneity (see Fig. S6). On

average, pathway homogeneity is 0.68 (sd 0.24) for OMIM and

0.59 (sd 0.25) for CURATED, suggesting that in these datasets

60–70% of the gene products belonging to a disease cluster

participate in the same pathway. For the more populated networks

(LHGDN and ALL) the average pathway homogeneity values of

disease clusters decreases to approximately 0.48 (sd 0.23).

However, we again observe a decrease of the pathway

homogeneity with increasing number of gene products

annotated to the diseases clusters (r = 20.26) (see Fig. S6). A

more detailed analysis of the disease clusters revealed that the

majority has medium pathway homogeneity values and there are

only few extremely homogeneous or heterogeneous disease

clusters. Overall, the results for single diseases and disease

clusters are similar. Hence, for most diseases and even for

clusters of diseases, more than one biological pathway is

associated. It can be argued that for these diseases cross-talks of

pathways could play an important role. For instance, the cross-talk

between Integrin and TGF-b pathways has been found to be

Figure 2. Pathway homogeneity for individual diseases. Mean pathway homogeneity values of single diseases and random controls are
plotted for all four networks binned by the number of associated gene products per disease. Pathway homogeneity values range from 0 to 1, where 1
means that all gene products associated with the disease are annotated to the same pathway. Confidence intervals of 95% were added to allow
comparison of real to random values. For OMIM, there are only two diseases with more than 30 gene products annotated, both with a pathway
homogeneity of 1.
doi:10.1371/journal.pone.0020284.g002
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related to several human pathologies including systemic sclerosis,

idiopathic pulmonary fibrosis, chronic obstructive pulmonary

disease and cancer [38].

B.2. Functional analysis of gene clusters. Studies focused

on a specific disease presented evidence arguing for a modular

nature of the disease, especially for congenital malformations and

related syndromes [13,18]. In the previous sections, we evaluated

from a disease centric view if functional modules exist for human

genetic diseases. In this section, we assess the modularity from the

gene centric view by evaluating if groups of phenotypically related

genes represent functional modules in the cell. For this purpose we

analyzed the functional annotations of gene products in clusters

derived from applying the graph-clustering algorithm on the gene

projection networks (see Methods).

Gene products can be functionally related to each other in

different ways: by means of direct, physical protein-protein

interactions or by more indirect associations as observed between

enzymes in the context of a metabolic pathway.

First we assessed to which degree the proteins encoded by the

genes in the clusters directly interact in the cell. For this purpose,

we used a recently published human interaction network (HIN)

based on protein-protein and signaling interactions [36] and

calculated HINscores for the gene clusters (see Methods). The

HINscore ranges from 0, where none of the gene products in a

cluster directly interacts in HIN, to 1, if all gene products

physically interact in HIN and hence the gene cluster represents a

biologically functional module. Therefore, the HINscore can be

used to measure the modularity of human diseases in our

networks. For CURATED and OMIM, clusters including less

than 50 nodes show HINscores significantly higher than for

random clusters, while for the other networks the difference is

significant for clusters of less than 15 nodes (see Fig. 3A). Fig. 3B

illustrates some selected clusters from CURATED with high

HINscores. For instance, cluster B.1 contains genes mainly

associated with mitochondrial complex I deficiency (genes in the

lower right part of the gene cluster), and Leigh and Alexander

diseases (genes in the upper left part of the gene cluster). The latter

are neurometabolic disorders that result from defects in the

mitochondrial respiratory chain. Genes associated with these

diseases encode proteins that form a physically interacting module

as illustrated by the HIN subgraph. Other examples of clusters

with high HINscore are related to peroxisomal disorders (e.g.

Zellweger syndrome), different types of anemia (Diamond-Black-

fan anemia or Heinz body anemia) or Walker-Warburg and

Fukuyama syndromes. Thus, the HINscore can be used to identify

phenotypically derived gene clusters, in which direct interactions

between the gene products might play an important role.

Second, we evaluated the indirect relationships between disease

gene products. For this purpose we calculated pathway homoge-

neity of the phenotypically related gene clusters. In CURATED,

60% of the clusters have pathway homogeneity values ,0.75.

Hence for more than half of the clusters, there are at least two

pathways annotated. In CURATED, the average pathway

homogeneity for clusters smaller than 50 nodes is significantly

higher than for randomly selected clusters (see Fig. S7). For clusters

larger than 50 nodes the results are not significantly different from

random controls; however, such clusters are underrepresented in

our dataset. Moreover, similar to individual diseases and disease

clusters, we observe that the homogeneity decreases with increasing

size of the cluster for all data sets (r = 20.20).

C. Summary and outlook
Most of the gene clusters (72%) in CURATED are of size

smaller than 15. Interestingly, for such clusters, HINscores and

homogeneity values differ significantly from random for all four

networks. In general, clusters with high HINscore or pathway

homogeneity are homogeneous in terms of associated diseases,

meaning that the genes are annotated to similar diseases. For

example, gene products of cluster B.1 depicted in Fig. 3, which

corresponds to mitochondrial respiratory chain deficiencies and

Alexander and Leigh Disease, physically interact and hence the

HINscore is very high. In addition, they are all annotated to the

same pathway resulting in a pathway homogeneity value of 1. In

contrast, clusters with very low homogeneity values (,0.25) are

heterogeneous in terms of disease annotation. These clusters,

which are underrepresented in the dataset, contain genes with very

high allelic heterogeneity. In CURATED, for instance, genes

having more than 20 associated diseases, belong to heterogeneous

clusters with low pathway homogeneity values (mean = 0.28,

sd = 0.11). Thus, the genes in these clusters are annotated to

different biological pathways. It could be argued that such genes

encode multifunctional proteins that participate in different

biological processes, and mutations in these proteins affecting

different functions can then lead to different disease phenotypes.

This set of genes might be classified as pleiotropic genes [39] or

represent genes that ‘‘moonlight’’ between different functions [40].

The diversity of functional annotation of these genes might be

‘‘obscuring’’ the modularity of the associated diseases. Thus, it

would be interesting to further investigate the role of these proteins

with respect to disease development. Nevertheless, the majority of

clusters show medium range HINscore and pathway homogeneity

values, suggesting that not a single biological process but a core-set

of biological processes is relevant for the disease. This has

important implications for disease treatment and drug develop-

ment. If a disease is associated with several pathways, a therapy

considering the diversity of biological processes could be of

advantage [41]. And if a set of diseases is related to the same

pathways, a treatment already successful for one of the diseases

could also be applied to the other diseases [42].

We studied the concept of modularity from the disease and the

gene centric perspectives. All in all, our results show that for most

diseases, and even for clusters of related diseases, functional modules

do exist. Moreover, we show that phenotypically related gene

clusters resemble functional modules. Hence, these functional

modules can be studied more deeply to shed light on the

mechanisms related to the diseases. We therefore determined the

specific biological processes relevant for each gene cluster by

calculating GO term and pathway enrichment (see Text S1, Section

2.3). We obtained significant (p-value,0.05) GO and pathway

enrichment for 94% of the clusters in CURATED. Details on the

clusters and the enrichment results are also available online.

There are some limitations to our analysis related to the

incompleteness of our databases due to natural limitations in the

curation process of the original databases, and related to

inaccuracies derived from text-mining. Moreover, annotation issues

have to be considered, such as the incomplete annotation of genes to

GO terms, biological pathways and HIN, and the incomplete

coverage of cross-talks and other annotation issues in pathway

databases [43]. Even taking into account the aforementioned

limitations, to the best of our knowledge, this is the first global

analysis of human genetic diseases including mendelian, complex

and environmental diseases. Overall, we observe good quality of

text-mining derived associations, as values for LHGDN are

comparable to the networks derived from expert-curated databases.

Case studies
Our comprehensive database represents a suitable framework to

study human diseases with genetic origin and also the influence of

Modularity in Human Diseases
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environmental factors, such as drugs. In this section, we provide

some examples making use of our integrated database and the

results of the enrichment analysis to inspire future studies and to

encourage other researchers to use DisGeNET. Illustrative case

studies for the (i) analysis of mechanisms underlying adverse drug

reactions, (ii) prediction of disease candidate genes, (iii) study of the

interactions between environmental factors and diseases at the

genetic level, and (iv) identification of shared mechanisms of

distinct diseases are presented. Moreover, we provide a Cytoscape

session file including all examples discussed in this article (http://

ibi.imim.es/DisGeNET/data/DisGeNET.cys).

Case study 1: Analysis of mechanisms underlying adverse

drug reactions. Rhabdomyolysis can result from a traumatic

injury, but also appears as a consequence of other diseases or due

to intoxication with recreational and prescription drugs, such as

Perhexiline. One of the three genes associated with Rhabdo-

myolysis is CPT2, which encodes the mitochondrial carnitine

palmitoyltransferase II (see Fig. 4). Inherited deficiencies in this

enzyme lead to CPT2 deficiency, an autosomal recessive disorder

characterized by recurrent Myoglobinuria, episodes of muscle

pain, stiffness, and Rhabdomyolysis. On the basis of this

knowledge it is possible to create a hypothesis on the mechani-

sms by which certain drugs such as Perhexiline can lead to

Rhabdomyolysis. Perhexiline, which is prescribed for severe

Angina Pectoris [44] inhibits CPT1, shifting myocardial

substrate utilization from long chain fatty acids to carbohydrates

(http://www.drugbank.ca/drugs/DB01074). Perhexiline can also

target, to a lesser extent, CPT2 [45], which would explain the

Figure 3. HINscores for phenotypically derived gene clusters. A: Mean HINscores plotted for different cluster sizes for all networks and
random controls. B: Selected gene clusters denoted as B.1, B.2, B.3 and their corresponding HIN subgraphs from the CURATED dataset. In the
phenotypically derived gene clusters (upper part) red edges represent physical interactions among the gene products. In the HIN subgraphs (lower
part), red edges denote phenotypic relationship among the corresponding genes. Nodes in light blue belong to the phenotypically derived gene
clusters that are not present in HIN. B.1 is associated with mitochondrial respiratory chain deficiencies, Leigh and Alexander Disease. B.2 corresponds
to Hypertension and Cardiovascular Diseases. B.3 represents different types of Hyperlipoproteinemia. Nodes are colored according to their disease
class (see Fig. S4).
doi:10.1371/journal.pone.0020284.g003
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toxic effects of the drug in skeletal muscles due to the association of

CPT2 with Rhabdomyolysis. Note that the association of CPT2

with Rhabdomyolysis was not available in any of the curated

databases but in our integrated data set. This example shows the

potential of using our gene-disease data in combination with drug-

target data for the analysis of drug adverse reactions.

Case study 2: Gene clusters and pathway analysis to

predict new disease candidate genes. One of the gene clusters

is composed of 20 genes associated with a variety of diseases such as

melanoma and developmental diseases affecting pigmentation, eye

and ear functions (Tietz and Waardenburg syndromes). Most genes

of the cluster are associated with melanoma with the exception of

MITF (see Fig. 5A). GO enrichment analysis resulted in terms like

‘‘melanin biosynthetic process from tyrosine’’ (GO:0006583), ‘‘eye

pigment biosynthetic process’’ (GO:0006726) and ‘‘melanocyte

differentiation’’ (GO:0030318), among others. These are all

processes relevant to skin, hair and eye pigmentation, hearing

function in the cochlea, and skin carcinogenesis. Fig. 5B shows the

Melanogenesis pathway (KEGG hsa:04916), which is the most

significantly enriched pathway for this cluster. The proteins encoded

by genes TYR and ASIP (ASP in KEGG) and the transcription

factor encoded by MITF regulating expression of the TYR gene,

are highlighted in red in the pathway. Since MITF appears not only

in the same phenotypically derived cluster but also in the same

pathway as the genes associated with Melanoma, it could be

proposed that MITF is a candidate disease gene for Melanoma. In

fact, we could confirm this finding by checking the disease

neighborhood of MITF in the gene-disease network (ALL) that

also includes text-mining derived information (see Fig. 5C). The

information extracted by text-mining indicates that MITF has been

reported as a gene involved in melanocyte development and

characterized as melanoma oncogene [29,30]. In conclusion,

clustering analysis of the gene projection network followed by

functional enrichment analysis can be used to propose new

candidate disease genes. We would also like to mention here that

the CURATED set of DisGeNET represents a suitable dataset to

benchmark computational methods for the prediction of candidate

disease genes.

Case study 3: Interaction between environmental exposure

with arsenic compounds and cancer at the genetic

level. Another gene cluster contains 67 genes mostly associa-

ted with Arsenic Poisoning, skin and nervous system diseases, and

different types of neoplasm. Arsenic is a well established human

carcinogen, and many studies support an association between

arsenic exposure and increased incidence of solid tumors, such as

lung, bladder, prostate, renal and skin tumors [46,47,48,49,50,51].

Moreover, studies conducted in developing countries show a

general increase in the incidence of different types of cancers,

which is hypothesized to be associated with exposure to environ-

mental toxins, among other factors, some of them of genetic origin

[52,53,54]. Thus, there is a need to investigate the interactions

among environmental carcinogens and genetic factors [53].

Although more studies are needed to determine a linkage between

arsenic exposure and Breast Cancer incidence [55], this cluster

indicates a possible association at the genetic level. Some of the

genes that are associated with Arsenic Poisoning are also known to

be associated with Breast Cancer, such as TNF, CCL20, CXCL2,

CXCL3 and IL1B. Apoptosis-inducing factors IL1B and TNF are

down regulated by arsenic compounds [56], as indicated by the

supporting evidence of one of the associations in the dataset. This

observation combined with the knowledge on DNA damaging effect

of arsenic [57] may provide a mechanistic hypothesis for the

tumorigenic effects of arsenic.

All in all, cluster analysis of the gene projection network uncovered

an interesting relationship between environmental exposure to

arsenic compounds and breast cancer. This relationship deserves

further investigation at the epidemiological and molecular levels.

Case study 4: Identification of shared mechanisms of

different diseases. Another cluster containing 79 genes is an

example of a heterogeneous cluster in which genes are associated

with different diseases. Fig. 6 shows the three main disease groups,

Atopic Dermatitis (an autoimmune skin disease), Diabetes Mellitus

Type I (an early onset, insulin-dependent, autoimmune disease),

and Inflammatory Bowel Diseases (including Crohn Disease and

Ulcerative Colitis). All these diseases are related as they share

many gene associations. Interestingly, according to MeSH, one of

Figure 4. Knowledge about genetic basis of diseases can shed light on mechanisms underlying drug adverse reactions. A network of
genes and diseases around Rhabdomyolisis is displayed. The drug Perhexiline is used for treatment of Angina Pectoris and has as therapeutic target
CPT13. In addition, it can also target CPT2. Since deficiencies in CPT2 function are associated with Rhabdomyolisis, it can be proposed that Perhexiline
causes Rhabdomyolisis through its action on CPT2.
doi:10.1371/journal.pone.0020284.g004
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the diseases (Crohn Disease) is not classified as Immune Systems

Disease but only as Digestive Systems Disease (genes colored in

pink). However, it is well established that Crohn Disease is an

autoimmune disease [58,59], and this grouping is captured by the

network analysis.

GO term and pathway enrichment analysis showed that for this

heterogeneous cluster, there are common biological processes

associated with the distinct diseases. For instance, although there

are 59 pathways annotated to this cluster, the pathway

homogeneity is 41% indicating that almost half of the gene

products appear in the same pathway. The most significantly

enriched processes are related to immune (GO:0006955) and

inflammatory response (GO:0006954), while the most significantly

enriched pathway is the Jak-STAT signaling pathway (KEGG

hsa:04630). Fig. 6 shows the Jak-STAT signaling pathway, which

contains genes associated with all three diseases of this cluster.

Interestingly, the connections of the different diseases can be seen

on different levels of this signaling pathway, from receptor-ligand

interactions towards downstream signaling and transcriptional

regulation. This example shows the value of clustering and

subsequent GO and pathway enrichment analysis to identify

mechanisms that are common to different diseases.

Conclusions
The first goal of this study was to develop a comprehensive

resource covering the current knowledge on human genetic

diseases and to provide it to the community. The second goal of

this study was to address the concept of modularity in all human

diseases with genetic origin. Although in the biomedical literature

it is often assumed that human diseases are modular, the validity of

this hypothesis has not been tested before in a systematic manner

for all diseases with genetic origin. We have performed a detailed

study of the emergent properties of human gene-disease networks

by means of computational analysis, covering the whole spectrum

of human diseases with genetic origin including monogenic,

complex and environmental diseases. The results indicate a highly

shared genetic origin of monogenic, complex and environmental

diseases. Moreover, most diseases cannot be attributed to a single

gene but to defects of several genes. Interestingly, these genes are

likely to participate in a core set of biological processes. This is

even observed in several mendelian disorders, contrasting to

previous findings. More strikingly, similar findings are obtained

when studying groups of diseases. This suggests that the diseases in

these groups, which can be very similar but also very unrelated,

might arise due to dysfunction of the same biological processes in

the cell. Finally, we identified the core biological processes

associated to the diseases in DisGeNET and show in several

examples the value of such analysis to unveil the mechanisms

leading to disease phenotypes and adverse drug reactions. Our

computational analysis has important implications for understand-

ing disease mechanisms and how environmental factors, such as

drugs, influence human health. Finally, we provide all gene-disease

networks in a user-friendly way through DisGeNET [28], a

Cytoscape plugin and as SQLite database for direct computational

access to aid future research of disease-related processes that will

also benefit drug discovery and development.

Methods

Data integration
DisGeNET, a comprehensive database of gene-disease associ-

ations was developed by integrating information from four

Figure 5. Candidate disease gene prediction. A: Phenotypically derived gene cluster associated with Melanoma. MITF is the only gene in the
cluster not associated with Melanoma. B: The Melanogenesis pathway (KEGG: hsa:04916) with genes MITF, TYR and ASP (ASIP in A) colored in red. C:
Neighborhood of MITF gene in network ALL.
doi:10.1371/journal.pone.0020284.g005
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repositories: Online Mendelian Inheritance in Man (OMIM) [6],

UniProt/SwissProt (UNIPROT) [60], Pharmacogenomics Knowl-

edge Base (PHARMGKB) [61], and Comparative Toxicoge-

nomics Database (CTD) [8]. In addition, associations from a

literature-derived human gene-disease network (LHGDN) [62]

were included to increase the coverage of the database. For a

correct integration of gene-disease association data, we developed

a gene-disease association ontology (see Fig. S1). The data sources,

gene-disease association ontology and data integration approach

are described below.

Data sources
OMIM: Online Mendelian Inheritance in Man (OMIM)

focuses on inherited diseases. Gene-disease associations were

obtained by parsing the mim2gene file for associations of type

‘‘phenotype’’ (data was downloaded from ftp://ftp.ncbi.nlm.nih.

gov/gene/DATA/mim2gene on June, 6th 2009) and classified as

Marker in our gene-disease association ontology (see Fig. S1). In

total, we obtained for 2198 distinct genes and 2473 distinct disease

terms 3432 gene-disease associations. After mapping of disease

vocabularies, the OMIM network contained 2417 distinct diseases.

UNIPROT: UniProt/SwissProt is a database containing

curated information about protein sequence, structure and

function. Moreover, it provides information on the functional

effect of sequence variants and their association to disease. We

extracted this information from UniProt/SwissProt release 57.0

(March 2009) as described in [63]. All protein identifiers were

converted to Entrez Gene identifiers in order to allow integration

with the other data sources. All gene-disease associations were

classified as GeneticVariation. UniProt provided 1746 distinct

gene-disease associations for 1240 distinct genes and 1475 distinct

diseases.

PHARMGKB: The Pharmacogenomics Knowledge Base

(PharmGKB) is specialized on the knowledge about genes that

are involved in modulating drug response (pharmacogenes). Genes

are classified as pharmacogenes because they are (i) involved in

the pharmacokinetics of a drug (how the drug is absorbed,

distributed, metabolized and eliminated) or (ii) the pharmacody-

namics of a drug (how the drug acts on its target and its

mechanisms of action) [61]. Hence, it covers less broadly human

gene-disease associations but was found to be complementary to

the other sources, as it contains some gene-disease associations not

present in the other repositories. We downloaded genes.zip,

diseases.zip and relationships. zip from http://www.pharmgkb.

org/resources/downloads_and_web_services.jsp on June 6th 2009

and parsed the files to extract gene-disease associations. We

furthermore made use of the Perl webservices to obtain all

available annotations and supporting information. We included

1772 associations for 79 distinct genes and 261 distinct diseases.

PharmGKB associations were classified as Marker if the original

label was ‘‘Related’’ and as RegulatoryModification if the original

label was ‘‘Positively Related’’ or ‘‘Negatively Related’’.

CTD: The Comparative Toxicogenomics Database (CTD) con-

tains manually curated information about gene-disease relation-

ships with focus on understanding the effects of environmental

chemicals on human health. We downloaded the CTD_gene_

disease_relations.tsv file from http://ctd.mdibl.org/downloads/

on June 2nd 2009 and parsed it for gene-disease associations of

type ‘‘marker’’ or ‘‘therapeutic’’ (see http://ctd.mdibl.org/help/

glossary.jsp for description of the original labels). CTD includes

associations from OMIM but with some differences (i) for some

associations extra information such as cross-links to PubMed are

available and (ii) some associations are missing in either of the two

databases. Hence, we kept all available gene-disease associations

from both sources. All CTD gene-disease associations were

classified as Marker if the original label was ‘‘marker’’ and as

Therapeutic if the original label was ‘‘therapeutic’’. All cross-links

to PubMed were kept. In total CTD data provided 6469

associations for 2702 distinct diseases and 3345 distinct genes.

LHGDN: The literature-derived human gene-disease network

(LHGDN) is a text mining derived database with focus on

extracting and classifying gene-disease associations with respect to

several biomolecular conditions. It uses a machine learning based

algorithm to extract semantic gene-disease relations from a textual

Figure 6. Identification of shared mechanisms of different diseases. A cluster containing genes associated with distinct diseases is shown on
the left part of the figure. There are three main disease groups, Atopic Dermatitis (an autoimmune skin disease), Diabetes Mellitus Type I (an early
onset, insulin-dependent, autoimmune disease), and Inflammatory Bowel Diseases (including Crohn Disease and Ulcerative Colitis). Diseases are
coloured according to their disease class (see Fig. S4). The most significantly enriched Jak-STAT signaling pathway is displayed with some nodes from
the cluster colored in red (right part).
doi:10.1371/journal.pone.0020284.g006
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source of interest. The semantic gene-disease relations were

extracted with F-measures of 78 (see [62] for further details). More

specifically, the textual source utilized here originates from Entrez

Gene’s GeneRIF (Gene Reference Into Function) database [64].

This database represents a rapidly growing knowledge repository

and consists of high-quality phrases created or reviewed by MeSH

indexers. Hereby, the phrases refer to a particular gene in the

Entrez Gene database and describe its function in a concise

phrase. Using this textual repository for text mining has recently

gained increasing attention, due to the high quality of the provided

textual data in the GeneRIF database [62,65,66]. LHGDN was

created based on a GeneRIF version from March 31st, 2009,

consisting of 414241 phrases. These phrases were further restricted

to the organism Homo sapiens, which resulted in a total of 178004

phrases. We extracted all data from LHGDN and classified the

original associations using our ontology. In total, LHGDN

provided 59342 distinct gene-disease associations for 1850 diseases

and 6154 distinct genes. The LHGDN is also available in the

Linked Life Data Cloud (http://linkedlifedata.com/sources).

Gene-disease association ontology
For a correct integration of gene-disease association data, we

developed a gene-disease association ontology (see Fig. S1). The

GeneDiseaseAssociation ontology describes the different types of

association between a gene and a disease and was developed to

integrate information from the different databases used in this

study. We inspected the different types of gene-disease associations

included in each of the databases and developed the ontology as a

mean to harmonize them in a common framework. While most of

the databases focus on describing ‘‘true’’ associations between

genes and diseases, some of the databases also contain information

of genes that are known to be not associated to a certain disease

phenotype. Thus, an upper level classification of the associations

based on the level of certainty of the gene-disease association was

used. The ‘‘Association’’ class indicates that there is indeed an

association between a gene and a disease; and the ‘‘NoAssocia-

tion’’ class indicates that there is no association between a gene

and a certain disease state. This can also be expressed as

independence between a certain state of the gene/protein and the

disease state. Two data sources (PharmGKB and LHGDN)

provide associations that were mapped to the class ‘‘NoAssocia-

tion’’, in particular associations labeled ‘‘not related’’ from

PharmGKB and ‘‘negative association’’ from LHGDN.

Consequently, we classified all association types as found in the

original source databases into Association if there is a relationship

between the gene/protein and the disease, and into NoAssociation if

there is no association between a gene/protein and a certain

disease (in other words, if there is evidence for the independence

between a gene/protein and a disease). In this study, we only con-

sidered gene-disease associations of type Association. The ontology is

available at http://ibi.imim.es/DisGeNET/DisGeNETweb.

html#Download.

Mapping of disease vocabularies and disease
classification

We used the Medical Subjects Headings (MeSH) hierarchy for

disease classification (see http://www.nlm.nih.gov/mesh/). The

repositories of gene-disease associations use two different disease

vocabularies, MIM terms (used by OMIM, UniProt, CTD) and

MeSH terms (used by CTD, PharmGKB, LHGDN). We used the

UMLS metathesaurus to map from MIM to MeSH vocabularies.

This step was performed to merge disease terms representing the

same disorder, thus reducing redundancy. We were able to map

497 MIM terms directly to MeSH using UMLS and we

additionally mapped 23 MIM terms by using a string mapping

approach. Briefly, we searched the UMLS metathesaurus for

MeSH terms for which there is at least one synonym exactly

matching one of the synonyms describing the MIM term of

interest. The resulting 63 matched terms were manually checked

and reduced to 23 terms. For disease classification, we considered

all 23 upper level concepts of the MeSH tree branch C (Diseases),

plus two concepts (‘‘Psychological Phenomena and Processes’’ and

‘‘Mental Disorders’’) of the F branch (Psychiatry and Psychology).

Moreover, we added one disease class ‘‘Unclassified’’ for all

disease terms for which a classification was not possible. We

categorized all diseases into one or more of the 26 possible disease

classes. For MeSH disease terms we directly used its position in the

MeSH hierarchy, for MIM disease terms not mapped to MeSH,

we used the disease classification of [22]. Then, we mapped their

disease classification to the MeSH hierarchy and extended the

mapping using a disease classification available at CTD (CTD_di-

sease_hierarchy.tsv downloaded August, 8th 2009). In total, we

were able to classify 3980 (98.39%) diseases. The disease

classification allows filtering and searching of the network

restricted to disease class, all implemented within DisGeNET

[28]. The disease classification is available as text file in the

supplementary material (Text S2). Many diseases are assigned to

more than one disease class as several systems or organs are

affected. Fig. S4 shows the disease color mapping used in

DisGeNET [28]. Disease and gene nodes can be colored

according to their disease class and can have multiple colors if

they are assigned to more than one disease class.

Generation of gene-disease networks
The gene-disease associations can be represented as bipartite

graphs, which have two types of vertices and the edges run only

between vertices of unlike types [67]. Accordingly, we constructed

four different networks, OMIM, CURATED (containing associ-

ations from expert curated databases), LHGDN (text-mining

derived associations) and ALL (containing all associations). In our

networks, multiple edges represent the multiple data sources

reporting the gene-disease association. We generated two

projections, one for the diseases and one for the genes using the

igraph library in R [68]. The projected networks contain only

vertices of the same kind (monopartite) and two nodes are

connected if they share a neighbor in the original bipartite graph.

Before calculating node degree distributions and projecting the

networks, we simplified the graphs by removing multiple edges. In

the simplified graphs the node degree represents the number of

first neighbors.

All gene-disease networks are available as SQLite database and

through DisGeNET, a Cytoscape plugin, both available online at

http://ibi.imim.es/DisGeNET/DisGeNETweb.html#Download.

Graph clustering
To identify clusters in the disease and gene projection networks,

we used the MCL graph cluster algorithm [69], which has

successfully been applied to protein family detection [70]. We

applied the algorithm using edge weights calculated as follows:

we(v1,v2)~
\av1,av2

min av1,av2ð Þ ,we(v1,v2)[ 0,1� � ð1Þ

where e(v1, v2) is the edge connecting vertices v1 and v2 and av is

the number of annotations to vertex v (genes to disease nodes or

diseases to gene nodes). Edge weights range from zero to one
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(excluding zero), where one means that the two vertices share all

annotations of the node with less annotation.

Pathway homogeneity
It has been shown that for OMIM diseases the associated genes

are involved in the same biological and cellular processes

[17,22,71]. In order to test if this concept applies for our integrated

data set, we calculated pathway homogeneity for (i) each disease

separately, (ii) for the disease clusters and (iii) the gene clusters.

Homogeneity is defined as the maximum fraction of genes

sharing the same biological annotation:

Hi~maxj
n

j
i

ni

" #
ð2Þ

where ni is the total number of genes in the disease, disease cluster

or gene cluster (i) with annotations, and n j
i is the number of genes

sharing the same biological annotation (j). The pathway

annotation was downloaded from KEGG (ftp://ftp.genome.jp/

pub/kegg/genes/organisms/hsa) and Reactome (http://www.

reactome.org/download/index.html) on November, 11th 2009.

To calculate random controls for pathway homogeneity for

single diseases and disease clusters, we randomly sampled genes

from the set of disease genes of the studied network with

annotation to pathways. We then took the annotation of the

corresponding gene products and calculated pathway homogene-

ity values. Random controls for gene clusters were obtained by

randomly assigning genes to clusters while total number of clusters

and original cluster sizes were maintained. Random sampling was

repeated 104 times to reach statistical significance and averages

were compared to real values. We use a significance level of 0.05.

Moreover, binning of cluster sizes was performed to show

dependence of cluster sizes and homogeneity values, for the bin-

wise comparison of mean values, 95% confidence intervals were

calculated. To study the correlation between homogeneity values

and the number of associated gene products we calculated the

Pearson correlation coefficient (r).

HINscore calculation
To evaluate if disease genes products belonging to our clusters

are more likely to interact directly than randomly selected genes

we calculated the HINscore using the recently published human

interaction network (HIN) [36]. HIN is based on protein-protein

interaction data from HPRD and pathway data from Reactome,

NCI/Pathway Interaction database and the MSKCC Cancer Cell

map. The HINscore for each gene cluster is defined as:

HINscoreclusteri
~1{

ccsgclusteri
{1

n{1
ð3Þ

where cc is the number of connected components of subgraph sg

built using all nodes in clusteri connected by edges appearing in the

human interaction network (HIN), and n is the total number of

gene products in clusteri. The HINscore reflects the degree to which

the gene products in a cluster are connected between them in

terms of direct (physical) interactions. The HINscore is 1 if all

nodes in a cluster are directly connected in HIN; it is 0 if they are

not connected in HIN but only in the gene cluster due to shared

disease associations. Therefore, the HINscore represents a means

to measure to what extent the gene clusters represent functional

modules and hence to measure the modularity of human diseases.

We compared the HINscores with random controls for all four

networks. For the random controls, we randomly selected the

same number of genes per cluster from the samples set consisting

of all genes in the network of study being present in HIN. We

repeated the randomization process 104 times to achieve statistical

significance. We display mean HINscore for different cluster sizes

and 95% confidence intervals. We use a significance level of 0.05.

Supporting Information

Figure S1 Gene-disease association ontology. Gene-

disease association ontology developed to allow correct integration

of information from diverse repositories.

(TIF)

Figure S2 Number of distinct gene/disease nodes and
edges per data source. The number of diseases refers to the

actual number of disease nodes in the networks after mapping of

disease vocabularies. The number of edges (simplified) refers to the

number of distinct gene-disease associations. The number of edges

(multiple) represents all edges, considering one edge for each

source or evidence reporting the gene-disease association.

(TIF)

Figure S3 Venn diagrams of data overlap among
databases. The upper panel shows the overlaps among the

individual expert curated databases. The lower panel displays the

overlap of CURATED and the text-mining derived network

(LHGDN).

(TIF)

Figure S4 Disease classes visualization in DisGeNET.
Diseases were classified into 26 disease classes according to the

MeSH hierarchy allowing the analysis of groups of related diseases

based on standard disease classification. Using this disease

classification, many diseases are assigned to more than one disease

class as different systems or organs are affected.

(TIF)

Figure S5 Degree distributions of the bipartite net-
works. The node degree distributions of the bipartite networks

are plotted showing (A) the number of associated genes per disease

and (B) the number of associated diseases per gene. Red arrows

highlight the two disease- or gene-nodes with highest degree.

Moreover, average degree values are plotted.

(TIF)

Figure S6 Pathway homogeneity for disease clusters.
Mean pathway homogeneity values for different number of

associated gene products are plotted and compared to random

controls (CI 95%).

(TIF)

Figure S7 Pathway homogeneity for gene clusters. Mean

pathway homogeneity values for different number of associated

gene products are plotted and compared to random controls (CI

95%).

(TIF)

Text S1 Supplementary material describing topological an

functional network analysis and statistics on gene annotations.

(DOC)

Text S2 Disease terms from DisGeNET and their classification

according to MeSH (tab separated file).

(TXT)
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