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The use of classification trees
for bioinformatics
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Classification trees are nonparametric statistical learning methods that incor-
porate feature selection and interactions, possess intuitive interpretability, are
efficient, and have high prediction accuracy when used in ensembles. This paper
provides a brief introduction to the classification tree-based methods, a review of
the recent developments, and a survey of the applications in bioinformatics and
statistical genetics. C© 2011 John Wiley & Sons, Inc. WIREs Data Mining Knowl Discov 2011 1 55–63
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INTRODUCTION

T he rapid advent of technologies (such as mi-
croarrays, high-throughput sequencing, geno-

typing arrays, mass spectrometry, and automated
high-resolution imaging acquisition techniques) has
led to a dramatic increase in availability of biomed-
ical data. To transform the data into useful sci-
entific knowledge, novel bioinformatic approaches
are required to face the challenge of the growing
complexity (including the massive size) of the data.
Machine learning, including supervised learning algo-
rithms, is well suited for those data and has been ap-
plied to a variety of bioinformatic problems, including
genome annotation,1–3 biomarker identification,4,5

protein function prediction,6 protein structure
prediction,7 protein localization prediction,8,9 iden-
tification of protein interactions,10,11 and drug dis-
covery researches.12,13

Tree-based methods such as decision trees are
among the most popular machine learning algorithms
applied in bioinformatics and statistical genetics.
Figure 1 points at the increasing popularity of classi-
fication tree-based approaches in biomedical research
in the past two decades. This apparent success largely
stems from the model simplicity and interpretabil-
ity and its capability in handling high-dimensional
data with limited sample sizes (the large p and small
n problem, where the number of variables, p, is much
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larger than the number of samples, n), which are com-
mon in bioinformatic and statistical genetic datasets.

This review mainly focuses on the application
of tree and forest-based approaches in bioinformatics
areas. Interested readers could refer to large volume of
published literature for discussion on general tree and
forest approaches14–16 as well as their usage in other
areas such as pharmaceutical research17 and business
analysis.18 Below, we first describe the tree-based ap-
proaches, including the basic recursive partitioning
algorithm, followed by a discussion about ensemble
approaches and tree-based variable importance (VI)
measures. We then survey the applications of tree-
based algorithms in the context of bioinformatics and
statistical genetics. Finally, we provide links to com-
mon classification tree and ensemble software.

CLASSIFICATION TREE

Almost all classification tree construction algorithms
such as ID3,19 C4.5,20 and CART21 employ a top-
down heuristic search using recursive partitioning be-
cause the enumeration of all 2n possible partitions
is essentially intractable. Starting from a heteroge-
neous set (in terms of the variation in the class la-
bel or outcome variable) of training samples (root
node), each feature (or predictor) is evaluated using a
statistic to determine how well it classifies the training
samples by itself. The best feature is selected to split
the training samples to descendant nodes. The whole
process is recursively repeated to split the descendant
nodes until some prespecified stopping criteria are
met. This search algorithm is greedy because it never
backtracks to reconsider its previous choices. Usually,
the tree-growing step is followed by a bottom-up
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FIGURE 1 | The annual number of publications related to classification tree or random forest in PUBMED between 1990 and 2009. The example
query used for 1990 is: ‘classification tree’ [All Fields] or ‘decision tree’ [All Fields] or ‘random forest’ [All Fields] and ‘1990’ [Enter Date].

pruning step, which removes unessential subtrees to
avoid overfitting.

Splitting a Node
The critical step in tree growing is to select the best
feature to split a node. Most algorithms evaluate the
performance of a candidate feature in separating dif-
ferent class labels in the training samples. The concept
of impurity is usually used. Two common choices of
impurity within node t are entropy (where the reduc-
tion of entropy is also referred as information gain)

Ie(t) = −
l∑

j=1

pj (t) log{pj (t)},

and Gini index

IG(t) =
l∑

j=1

pj (t){1 − pj (t)},

where we assume that there are l classes and
p1, p2, ..., pl are the proportions of samples in the
l classes, respectively. Figure 2 depicts the shapes of
these two impurity functions for a binary response
with the success probability of p.

Then, in binary trees, a feature and a split are
chosen according to the following decrement in im-

purity:

�(s, t) = I(t) − h(tL)I(tL) − h(tR)I(tR),

where s is a split of node t, h(tL)andh(tR) are the pro-
portions of the samples in the left and right daughter
nodes of node t, respectively. In addition to the two
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described above, there are families of splitting ap-
proaches proposed, many of which were discussed in
Refs 22 and 23.

Stop-Splitting and Pruning
By recursively using the node-splitting procedure, we
usually end up with an overgrown tree (with too many
descendant nodes), which produces a tree that overfits
the training samples and is prone to random varia-
tions in the data. Two commonly employed strategies
to overcome the overfitting are to interrupt the tree
growing by a stop-splitting criterion and to apply a
pruning step on the overgrown tree, which removes
some nodes to reach an optimal bias-variance trade-
off. The stop-splitting criterion could be either based
on the node size, the node homogeneity, or elabo-
rate criterion based on statistical testing.20 Pruning
approaches include the use of independent validation
(or called test) samples or cross-validation (a sample
reuse approach).14,21 These approaches provide un-
biased or nearly unbiased comparisons (in terms of
misclassification errors) among the subtrees that can
be considered as the final trees.

Trees with Multivariate Ordinal Responses
Most decision trees in use or developed deal with a
single-class label, but many biomedical studies collect
multiple responses to determine the health condition
of a study subject, and each response may have several
ordinal levels. Often, these responses are examined
one at a time and by dichotomizing the ordinal lev-
els into a binary response, which may lead to loss of
information. Zhang and Ye24 proposed a semipara-
metric tree-based approach to analyze a multivariate
ordinal response. The key idea is to generalize the
within-node impurity to accommodate the multivari-
ate ordinal response, which was achieved by impos-
ing a ‘working’ parametric distribution for the multi-
variate ordinal response when splitting a node. Their
method produced some interesting insights into the
‘building-related occupant sick syndromes’.

CLASSIFICATION TREE-BASED
ENSEMBLES

Although tree models are easy to interpret, single tree-
based analysis has its own limitations in analyzing
large datasets. To name a few,

1. Similar to other stepwise models, the topol-
ogy of a tree is usually unstable. A minor per-

turbation of the input training sample could
result in a totally different tree model.

2. For ultrahigh dimensional data such as a
typical genomewide scan data, a single-
parsimonious model is not enough to reflect
the complexity in the dataset.

3. Tree-based models are data driven and it is
difficult, if not impossible, to perform theo-
retical inference.

4. A single tree may have a relatively lower
accuracy in prediction, especially compared
with support vector machine (SVM) and ar-
tificial neural networks.

One approach to overcome these limitations is
to use forests or ensembles of trees. This may im-
prove the classification accuracy while maintaining
some desirable properties of a tree such as simplic-
ity in implementation and good performance in ‘the
large p and small n problem’. In the past few years,
forest-based approaches have become a widely used
nonparametric tool in many scientific and engineering
applications, particularly in high-dimensional bioin-
formatic and genomic data analyses.25–28

In the following, we briefly discuss several forest
construction algorithms, followed by algorithms to
estimate the VI.

Random Forest Construction
The random forest (RF) algorithm29 is the most popu-
lar ensemble method based on classification trees. An
RF consists of hundreds or thousands of unpruned
trees built from random variants of the same data.
Although an individual tree in the forest is not a good
model by itself, the aggregated classification has been
shown to achieve much better performance than what
a single tree may achieve.

To construct an RF with B trees from a train-
ing dataset with n observations with k features, we
employ the following steps:

1. A bootstrap sample is drawn from the train-
ing sample.

2. A classification tree is grown for the boot-
strap sample. At each node, the split is se-
lected on the basis of a randomly selected
subset of mtry (much smaller than k) fea-
tures. The tree is grown to full size without
pruning.

3. Steps 1 and 2 are repeated B times to form
a forest. The ensemble classification label is
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made by a majority vote of all trees in the
ensemble.

It may first seem counterintuitive that trees are
grown to full length without pruning in RF. Using
strong law of large numbers, Breiman29 showed that
there is no overfitting in RF without pruning. The en-
semble prediction error converges as the number of
trees increases and the accuracy depends on both the
predictive strength of individual trees and the corre-
lation among trees.

A practical decision to make in RF construc-
tion is the selection of mtry. Common choices are
log (k) and

√
k, although their performance in high-

dimensional data has been debated. Genuer et al.30

performed a careful investigation on the effects of
mtry on RF performance in high-dimensional prob-
lems. They found that although in most cases, a small
mtry works well, but they also found that it needs to
be sufficiently large in high-dimensional problems to
achieve good performance. In many situations, the
optimal size of mtry is close to the number of vari-
ables, which is computationally prohibitive for most
of the ultrahigh dimensional data. To address these
concerns, Amaratunga et al.5 proposed an enriched
random forest approach in gene expression analysis
in which the sampling probability is based on a mono-
tonic function of the significance level of differential
gene expression detections instead of selecting a sub-
set of the genes with equal probability from all genes.

Forests Construction for Features with
Uncertainty
In practice, we tend to use or assume the observed
features as if they are fixed without uncertainty. How-
ever, in genetic studies for complex diseases, it is of
great interest to identify haplotypes that may be as-
sociated with a complex trait. A haplotype is a set of
alleles at multiple loci on a homolog and those alleles
are more likely to be transmitted together to the next
generation if the loci are closer. However, haplotypes
are not readily observed on a large scale by the cur-
rent technology and are usually inferred statistically
with uncertainties.

In order to explicitly account for the uncertain-
ties in the features, Chen et al.31 developed an ap-
proach called HapForest, which is a variant of forests.
The major difference between the original RF method
and this approach lies in the way of constructing the
training data for individual trees. In the original RF, a
bootstrap sample is used. In HapForest, each feature
with uncertainties is taken as a multinomial random

variable. Each training dataset is generated according
to the empirical distributions of the feature levels.

Deterministic Forests
A major cause for the instability of a single tree is that
the number of training samples is not sufficiently large
relative to the number of features. In ultrahigh dimen-
sional data, the sample size is usually much smaller
than the number of features, and as a result, many
trees with similar structure and similar performance
could be deduced from the same dataset. Zhang
et al.32 proposed a method that combines these trees
into a forest, which is called deterministic forest. It has
been shown that compared to a single-tree model, the
deterministic forest approach provides better classifi-
cation rules, which are also more biologically inter-
pretable than random forests. The construction of the
deterministic forest is straightforward. Each tree in
the forest is grown to a prespecified depth and at each
node, a prespecified number of top splits are selected
to grow the tree. For example, Zhang et al.32 selected
20 top splits for the root node and three splits for each
of the two daughter nodes. In total, they generated a
forest with 180 (20 × 3 × 3) trees.

Variable Importance
Unlike most other classifiers, classification tree di-
rectly performs feature selection while a classification
rule is built. In a classification tree, only a small por-
tion of features from a potentially large feature set
are used in the tree construction. By concentrating on
the selected features, it is also computationally quick
to evaluate the influence of the selected features and
set the influence of the nonselected to none. The con-
cept of VI is precisely for the purpose of ranking the
importance of the features. Because of the greedy na-
ture of the tree construction, only one split variable
is used at each node. Consequently, VI in single-tree
methods suffers from masking effects because when
multiple features produce similar reductions of impu-
rity at a specific node, all but one selected feature are
masked and have zero VI. On the contrary, ensemble
methods, which pool many trees together, alleviate
the masking issue either directly (such as the deter-
ministic forest approach) or indirectly through intro-
ducing randomness in the tree construction (the RF
approach). Also, in most cases, an ensemble of trees
is more difficult to interpret than a single tree. Thus,
it is even more pressing to estimate the VI in a forest
so that we can easily identify ‘important’ features. In
the following, we discuss several commonly used VI
measures.
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The two commonly used VI measures are
Gini importance index and permutation importance
index.33 Gini importance index is directly derived
from the Gini index when it is used as a node impu-
rity measure. A feature’s importance value in a single
tree is the sum of the Gini index reduction over all
nodes in which the specific feature is used to split.
The overall VI for a feature in the forest is defined as
the summation or the average of its importance value
among all trees in the forest.

Permutation importance measure is arguably
the most popular VI used in RF. The RF algorithm
does not use all training samples in the construc-
tion of an individual tree. That leaves a set of out
of bag (oob) samples, which can be used to measure
the forest’s classification accuracy. To measure a spe-
cific feature’s importance in the tree, we randomly
shuffle the values of this feature in the oob samples
and compare the classification accuracy between the
intact oob samples and the oob samples with the par-
ticular feature permutated. It is noteworthy that in
standard classification problems where p << n, the
choice of mtry affects the magnitude of the VI scores,
but little on the rank of the VIs.30

Although Breiman showed that, in general, the
Gini VI is consistent with the permutation VI, there
are also reports that Gini VI is in favor of features
with many categories, and an alternative implemen-
tation of the random forest to overcome this issue has
been proposed.34 The permutation VI is an intuitive
concept, but it is time consuming to compute. Fur-
thermore, its magnitude does not have a range and
can be negative. These shortcomings lead to several
recent measures of VI in bioinformatics and genetics
studies. Chen et al.31 proposed to use a depth impor-
tance measure, VI( j, t) = 2−L(t)S( j, t), where L(t) is
the depth of the node in the tree and S( j, t) is the
χ2 test statistic for the split based on feature j at
node t. The depth importance is similar to the Gini
VI in the sense that both measures reflect the quality
of the split. The major difference is that the depth im-
portance takes into account the position of the node.
This importance measure was shown to be effective
in identifying risk alleles in complex diseases.

Although most VI measures reflect the average
contribution among all trees in a forest, there are mea-
sures based on extreme statistic in a forest as well.
A good example is maximal conditional chi-square
(MCC) importance measure,35 which is defined as the
maximal chi-square statistic among all nodes split on
a specific feature as its importance score,

MCCi = max(x, x ∈ {S( j, t)},
t is any node splitted by feature j).

MCC was shown to improve the performance
of RF and have better power in identifying feature
interactions in simulations.35

The performance of RF and VIs with correlated
predictors is also an intensively investigated topic
without consensus. Strobl et al.36 suggested that the
VIs of correlated variables could be overestimated and
proposed a new conditional VIs, whereas Nicodemus
and Malley37 showed that permutation-based VIs are
unbiased in genetic study. In addition, Meng et al.38

recommended a revised VIs with the original RF struc-
ture to handle the correlation among predictors.

The Smallest Forest
Although a forest often significantly improves the
classification accuracy, it is usually more difficult to
interpret many trees in the forest than a single tree.
To address this problem, Zhang and Wang39 intro-
duced a method to find the smallest forest to balance
the pros and cons between a random forest and a sin-
gle tree. The recovery of the smallest forest makes it
possible to interpret the remaining trees and at the
same time avoid the disadvantage of tree-based meth-
ods. The smallest forest is a subset of the trees in
the forest that maintain a comparable or even bet-
ter classification accuracy relative to the full forest.
Zhang and Wang39 employed a backward deletion
approach, which iteratively removes a tree with the
least impact on the overall prediction. This is done by
comparing the misclassification of the full forest with
the misclassification of the forest without a particular
tree. As the forest shrinks in size, we can track its mis-
classification trajectory and use sample reuse methods
or oob samples to determine the optimal size of the
subforest, which is chosen as the one whose misclassi-
fication is within one standard error from the lowest
misclassification. This one standard error is to im-
prove the robustness of the final choice. Zhang and
Wang39 demonstrated that a subforest with as few as
seven trees achieved similar prediction performance
(Table 1) to the full forest of 2000 trees on a breast
cancer prognosis dataset.40

APPLICATIONS IN BIOINFORMATICS
AND GENETICS STUDIES

The classification tree and tree-based approaches have
been applied to a variety of bioinformatic problems,
including sequence annotation, biomarker discovery,
protein–protein interaction (PPI) prediction, regula-
tory network modeling, protein structure prediction,
and statistical genetics. In this section, we briefly
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TABLE 1 Comparison of Prediction Performance of the Initial Random Forest, the Optimal Subforest,

and a Previously Established 70-gene Classifier

Method Error Rate True Predicted Good Poor

Random forest 26.0% Good 141 17
Poor 53 58

Smallest forest 26.0% Good 146 22
Poor 48 53

70-gene classifier 35.3% Good 103 4
Poor 91 71

survey some representative applications. On the ba-
sis of the aims of the tree-based applications, we
roughly divide them into two major categories: clas-
sification/prediction and identification of important
features.

Classification
Many applications of classification tree and forest ap-
proaches in bioinformatics focused on classification
purposes.

Sequence annotation is a traditional area of ap-
plications for tree-based methods. Salzberg1 evalu-
ated the use of classification trees in protein-coding
sequence prediction and Davuluri et al.41 achieved
a good performance in predicting the promoter and
first exon for genes by combining quadratic discrim-
inant functions with decision trees. Recently, Gupta
et al.2 developed an RF-based algorithm to distin-
guish gene promoter sequences from other nonspecific
Pol II binding sequences from Chip-seq data. Tree-
based approaches have also been applied in the clas-
sification of nonprotein coding genes42 as well as mi-
tochondrial DNA.3

Protein function prediction is another area in
which machine learning algorithms including tree-
based approaches have been widely used. For ex-
ample, using RF, Jung et al.9 achieved near-optimal
performance in predicting extracellular matrix pro-
teins. Similar tree-based applications includes predict-
ing membrane proteins43,44 and classifying protein
subcellular location.8

PPI is central to biological process and pro-
tein functions. However, experimental determination
of pairwise PPIs is a labor-intensive and expensive
process. Therefore, prediction of PPI from indirect
information from individual protein is a rich field
of applications of machine learning algorithms. Qi
et al.45 and Lin et al.10 evaluated the performance of
several classifiers in predicting PPIs. In both studies,
RF achieved the best performance. On the basis of

the RF classifier, Mohamed et al.11 proposed active
learning schemes to further improve the classification
accuracy with smaller training set. Other tree-based
approaches were also proposed on this topic.46,47

An important task in biomedical research is to
classify between disease group and nondisease group
as well as to distinguish among different disease
subtypes. After comparing several machine learning
algorithms in cancer classification, Ben-Dor et al.4

concluded that the tree-based methods and SVM
were the front-runners. Using features generated from
protein sequential and structural information, Saito
et al.48 established a classification tree prediction
model with four nodes, which achieves relatively high
accuracy (86%) in distinguishing two forms of Fabry
diseases. Amaratunga et al.5 further improved the RF
performance in biomedical sample classification by
imposing weights on gene expression features.

Another topic in biomedical sample classifi-
cation is to identify biomarker set. Tree-based al-
gorithms, especially ensemble approaches, are also
widely used in this area because the VI measure could
be used to rank the input biomarkers. The goal in
biomarker identification is to select a small set of dis-
criminating biomarkers that maintain high classifi-
cation accuracy. Torri et al.49 used RF to derive a
subset of 44 genes, whose expression profile could be
used to identify inflammation in dendritic cells. Chen
et al.50 constructed a classification tree model with
five genes to accurately predict the treatment outcome
for non-small-cell lung cancer patients.

Tree-based approaches have also been applied
to other type of bioinformatics problems. Schierz51

employed a C4.5 implementation of classification tree
algorithm and achieved good performance in virtual
screening of bioassay data at PubChem database,
wherein there is imbalance between active and in-
active compounds. Kirchner et al.52 demonstrated
that using an RF-based approach, it is feasible to
achieve real-time classification of fractional mass in
mass spectrometry experiments. Similarly, RF-based
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approaches also demonstrated its power in computer-
aided diagnosis of single-photon emission computed
tomography images53 and in gene network54 and
pathway analysis.25

Identification of Important Features
Using the VI measure estimated from classification
trees or tree-based ensembles, it is possible to iden-
tify important features that are associated with the
outcome. Because tree approaches automatically take
interactions among features into consideration, it is
especially useful to identify those features that show
small marginal effects, but a larger contribution when
combined together. A typical application in this cat-
egory is genomewide association studies (GWASs),
wherein hundreds of thousands of single-nucleotide
polymorphisms (SNPs) are simultaneously assayed
across the entire genome in relation to disease or other
biological traits.

Both GWASs and biomarker discovery involve
feature selection methodology and therefore they are
related to each other. However, they have distinct
goals for feature selection. The goal in biomarker dis-
covery is to find a small set of biomarkers to achieve
good classification accuracy, which allows the devel-
opment of economical and efficient diagnostic test,
whereas the goal in GWASs is to find important fea-
tures that are associated with the traits and to estimate
the significance level of the association.

Lunetta et al.55 compared the performance of
random forest against Fisher’s exact test in screening
of SNPs in GWASs using 16 simulated disease models.
They concluded that random forest achieved compa-
rable power with Fisher’s exact test when there is no
interaction among SNPs, and outformed Fisher’s ex-
act test when interaction existed. Several studies have
proposed different VI measures in GWASs, wherein
there are a large amount of potentially correlated
predictors.36–38,56 Using a depth-related VI measure,
Chen et al.31 proposed HapForest, a forest-based en-
semble approach, to explicitly account for uncertainty
in haplotype inference and to identify risky haplo-
types. Chen et al.31 and Wang et al.57 applied this

approach to a GWASs dataset for age-related macular
degeneration. Besides the well-known risk haplotype
in the complement factor H gene (CFH) on Chromo-
some 1,58 a new potentially protective haplotype in
BBS9 gene was also identified on Chromosome 7 in
both studies at genomewide significance level of 0.05.
The results were consistent with Wang et al.,35 who
used the MCC VI measure.

A general concern regarding the tree-based ap-
proaches in GWASs is the difficulty in deriving
the theoretical null distribution for the VI mea-
sures. Usually, an empirical null distribution is gen-
erated through permutation, which can incur a high-
computational cost in ensemble methods. However,
because most ensemble methods are easily paral-
lelized, the efficiency problem could be potentially
mitigated with the availability of high-performance
computer clusters.

SOFTWARE AVAILABILITY

Classification tree and random forest are available
in standard statistical and machine learning soft-
ware such as R, SPSS, and Weka. The public can
also download free software from many researchers’
websites, such as http://c2s2.yale.edu/software for
many of the approaches described in this review, and
http://www.randomjungle.org/ for a fast implementa-
tion of random forest for high-dimensional data.

CONCLUDING REMARKS

With the data explosion during the past two decades,
machines learning algorithms are becoming increas-
ingly popular in biological analyses, wherein the
data complexity is always rising. As nonparametric
models, classification tree approaches and ensembles
based on trees provide a unique combination of pre-
diction accuracy and model interpretability. As a final
note, although this survey focused on the tree-based
classification approaches, trees and forests are also
commonly used in other statistical modeling such as
survival analysis.
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