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ABSTRACT

Multicellular organismal development is controlled
by a complex network of transcription factors,
promoters and enhancers. Although reliable compu-
tational and experimental methods exist for
enhancer detection, prediction of their target genes
remains a major challenge. On the basis of available
literature and ChIP-seq and ChIP-chip data for
enhanceosome factor p300 and the transcriptional
regulator Gli3, we found that genomic proximity
and conserved synteny predict target genes with a
relatively low recall of 12–27% within 2 Mb intervals
centered at the enhancers. Here, we show that
functional similarities between enhancer binding
proteins and their transcriptional targets and
proximity in the protein–protein interactome improve
prediction of target genes. We used all four features
to train random forest classifiers that predict target
genes with a recall of 58% in 2 Mb intervals that
may contain dozens of genes, representing a better
than two-fold improvement over the performance of
prediction based on single features alone. Genome-
wide ChIP data is still relatively poorly understood,
and it remains difficult to assign biological
significance to binding events. Our study represents
a first step in integrating various genomic features in
order to elucidate the genomic network of long-
range regulatory interactions.

INTRODUCTION

Decoding the regulatory program that controls metazoan
development is a major barrier to the understanding
of multicellular complexity in higher organisms.

A substantial fraction of this program is likely to be
encoded in gene deserts which harbor highly conserved
non-coding elements (HCNEs), located up to several
hundred kilobases away from the nearest gene (1,2).
Many of these intergenic and intronic regions represent
evolutionarily conserved enhancers and silencers, which
we will refer to as ‘enhancers’ in the following.
Enhancers coordinate tissue and developmental stage-
specific expression of their target genes by inducing
changes in chromatin conformation in order to bring
distant regulatory elements into spatial proximity of the
transcription start sites (TSS) of their target genes.
Extensive experimental and computational work has
been carried out on the detection of enhancer regions
(3,4).
The advent of high-throughput chromatin immunopre-

cipitation assays (ChIP-chip and ChIP-seq) has made
genome-wide in vivo mapping of protein–DNA
interactions possible. In agreement with the observation
that evolutionarily conserved regulatory elements are
located primarily in intergenic regions, <10% of
transcription factors have >50% of their binding sites
within 2.5 kb of a transcription start site (5). Recently,
Visel et al. (6) employed ChIP-seq to identify several
thousand genomic loci in mouse embryonic tissues which
were bound by the enhancer-associated p300 protein. p300
is a transcriptional coactivator (7) that is recruited by
other DNA binding proteins in a tissue and cell-type
specific manner to form an enhanceosome complex with
regulatory activity (8). About 87% of the p300 bound loci
regions showed tissue-specific enhancer activity (6).
Global correlations with expression data (6) and strong

biases for HCNEs to occur in the vicinity of transcription
factors and developmental genes (2) support the
assumption that enhancers regulate nearby genes. To
date, computational and experimental approaches for
enhancer detection have employed proximity-based
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cutoffs on genomic distance or nearest gene assignments
to associate putative enhancer regions to their target genes
(4,9–11). Although the genes located closest to the
enhancers are reasonable candidates for the target genes,
this is not a general rule. For instance, a Pax6 enhancer is
located in an intron of a neighboring gene (12,13).
Interactions between enhancers and their target genes
can span large genomic distances. For instance, an
enhancer of the sonic hedgehog (Shh) gene is located
1Mb upstream of the Shh gene (14). For these reasons,
enhancer targets cannot be reliably predicted by simple
computational rules based on genomic proximity.
Besides genomic distance, conserved synteny is the only

feature that has been considered to possess predictive
power for enhancer-target gene interactions (15,16).
Conserved synteny generally describes a relative order of
two or more genomic loci that is conserved in more than
one species (Supplementary Figure S1). This might reflect
a certain pattern of co-evolution between regulatory
region and target gene. The Vista enhancer browser (17)
allows manual investigation of flanking genes, and some
genome browsers like SynBrowse include information
about conserved synteny (18), but no automated
approaches exist that specifically predict the target genes
of a number of predicted or known enhancers (19).
Consequently, existing approaches for enhancer detection
(4,20,21) remain incomplete and fail to integrate
important developmental target genes into larger
regulatory modules and networks that control
multicellular organismal development.
One impediment to progress in this area is the paucity

of experimental enhancer-target gene interaction data.
Commonly used in vivo assays for enhancer activity that
use co-injection of enhancer and minimal promoter
reporter genes (2,6,22) provide evidence about the tissue
specificity of the enhancer but do not indicate which genes
are targets of the enhancer. On the other hand,
chromosome conformation capture (3C) assays (23,24)
test for physical interactions between enhancer and
promoter regions, and thus can be used to identify
enhancer target genes. However, no large-scale data set
of enhancer-specific chromatin interactions is available
with which to assess the quality of prediction methods.
To our knowledge, there has been no previous large-

scale computational analysis of the prediction of
enhancer targets. Ahituv et al. (15) mapped conserved
blocks of synteny (CBSs) that were homologous among
human/mouse/chicken or human/mouse/frog genomes
and identified �2000 CBSs> 200 kb for each comparison.
They postulated that such CBSs were enriched for long-
range regulatory interactions between enhancers and
target genes because the prevalence and distribution of
chromosomal aberrations leading to position effects
showed a clear bias not only for mapping onto CBS but
also for longer CBS size. Using a similar definition based
on alignments between human and zebrafish genomes,
Akalin et al. identified a set of genomic regulatory
blocks (GRBs) located within conserved human/
zebrafish-syntenic regions and predicted a set of 269
target genes of within the GRBs (25). The authors
postulated that HCNEs within the GRBs are enhancers

and that transcription factor genes within the GRBs are
their targets, but did not develop a method for predicting
target genes on a genome-wide basis or of predicting
target genes of a specific enhancer protein. In this work,
we present a method to predict the target genes of
potential enhancers identified as bound DNA sequences
in ChIP-seq and ChIP-chip experiments. We evaluated
our method using published data for p300 and Gli3 in
embryonic mouse tissues (6,26). Our method uses an
integrative approach based on random forest analysis of
a combination of genomic proximity, conserved synteny
as well as distance in protein–protein interaction (PPI)
networks, and Gene Ontology (GO) similarities between
regulator and putative target gene. Our algorithm showed
a substantially better accurracy than predictions based on
any single feature in isolation.

MATERIALS AND METHODS

Genome data and alignments

We downloaded pairwise net alignments generated by
blastz (27) for mouse (Mus musculus, mm9) against
opossum (Monodelphis domestica, monDom4), chicken
(Gallus gallus, galGal3), frog (Xenopus tropicalis,
xenTro2), zebrafish (Danio rerio, danRer5) and fugu
(Takifugu rubripes, fr2). We initially used data from
human and dog in our analysis; however including these
data sets did not improve the results (Supplementary
Figure S2), and therefore these two genomes were not
used for further analysis. In addition, mouse RefSeq
annotations for 22 468 genes were downloaded from the
UCSC Genome Browser (28). The phylogenetic distances
between these species are shown in Supplementary
Figure S3, whereby the branch lengths reflect the
average number of subsitutions per site as calculated
from genome-wide blastz alignments (29).

p300 ChIP-seq data

Visel et al. (6) used chromatin immunoprecipitation with
the enhancer-associated protein p300 followed by
massively parallel sequencing to map the in vivo binding
sites of p300 in mouse embryonic forebrain, midbrain and
limb tissue. We downloaded p300 ChIP-seq peaks and lists
of upregulated genes that were identified by comparing
forebrain and limb expression with E11.5 whole embryo
gene expression as measured on Affymetrix GeneChip
MouseGenome 430 2.0 arrays. The limb data (30) are
based on E11.5 proximal hindlimb expression (GEO
series GSE10516, samples GSM264689, GSM264690 and
GSM264691). The ChIP-seq also includes P300 bound
sites from midbrain, but we did not use this data
because no set of midbrain upregulated genes were
defined by Visel et al. We focused on upregulated genes
since Visel et al. (6) only observed ChIP-seq peak
enrichments in the vicinity of genes that are significantly
upregulated in the corresponding tissue, indicating that
p300 acts as a coactivator rather than as a repressor. In
total 2453 ChIP-seq peaks were obtained for embryonic
mouse forebrain tissue and 2105 for limb. Additionally,
1062 and 748 significantly upregulated probe sets were
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obtained that correspond to 555 upregulated genes with
RefSeq IDs for forebrain and 347 for limb (6). Affymetrix
gene expression microarrays are not able to reliably
distinguish between different transcripts of genes.
Therefore, one representative transcript was chosen for
each gene according to whether a transcript was in the
set of differentially expressed probesets, or failing that,
arbitrarily as the leftmost transcript on the Watson
strand of the chromosome. This reduced the number of
RefSeq IDs to 19 569.

Gli3 ChIP-chip data

We downloaded Supplementary Data sets 1 and 2 from
Vokes et al. (26). These data sets contain 5274 Gli binding
regions and 753 responsive genes that were identified using
pairwise and multiple sample comparison of expression
levels (Affymetrix Mouse Exon 1.0 ST arrays) for
overexpressed and mutated Gli3 versus wildtype and
anterior versus posterior forelimbs (26).

Genomic distances between enhancer and target gene

For each gene in a genomic window centered at the
enhancer, we calculated the genomic distance between
enhancer and target gene as the minimal distance
between the endpoints of the enhancer region and the
TSS of the candidate target genes. For the genomic
distance-based predictions, the gene with the minimal
distance was predicted to be the target gene.

Calculation of conserved synteny score (CSS)

We defined for each enhancer e a genomic interval in the
reference species r by selecting all genes for which the
genomic distance between enhancer and TSS of the gene
g is less than a maximal distance threshold dr(e,g)<�
(Supplementary Figure S1). For each gene g in this
region, we define a conserved synteny score (CSS) by
testing in other species s=1, . . . ,k whether the distance
ds(e,g) between aligned regions of enhancer and TSS is
smaller than the threshold �. The CSS is then calculated
as the sum of phylogenetic distances f(r,s)
(Supplementary Figure S3) between the reference r and
species s, where ds(e,g)<�.

CSSðe,gÞ ¼
X

s¼ 1...k

�sðe,gÞ � �ðr,sÞ ð1Þ

�sðe,gÞ ¼
1 if dsðe,gÞ < � in species s
0 otherwise

�

ds(e,g) was also taken to be zero if an orthologous gene
and enhancer could not be identified in the other species.
Since some genomes in our analysis are not finished and
annotations are incomplete, we identified orthologous
genes on the basis of the presence of aligned sequences
around the promoter region as defined by the TSS
±1kb. This assumes that the enhancer specifically
interacts with the promoters of their target genes. This is
supported by our recent finding that the occurrence of
intergenic HCNEs correlates with conservation in
promoter regions of nearby genes (31), which we interpret

as evidence for similar evolutionary constraints acting on
the enhancers as well as the promoter regions.
For the enhancer sequence, orthologous sequences were

identified on the basis of aligned sequence in the other
species. We note that rearrangements that disrupt
collinearity are not penalized by our scoring scheme
because according to our assumption, enhancers can
retain their function even after chromosomal
rearrangements that invert genes or change their order.

Gene Ontology similarity definition

We calculated for each GO term (t) in the ontology
an information content value (IC) defined as
ICðtÞ ¼ � log pt, where pt is the number of genes
annotated by GO term t divided by the total number of
annotated genes. The similarity between two terms can be
calculated as the IC of their most informative common
ancestor (MICA) (32). This can be used to calculate the
similarity (sim) between one set of terms, to another set of
terms, each of which belongs to a particular gene (gi, gj):

simðgi ! gjÞ ¼ avg
X
t12gi

max
t22gj

ICðMICAðt1,t2ÞÞ

" #
: ð2Þ

Note, that simðgi ! gjÞ is not necessarily equal to
simðgj ! giÞ. As previously described (33), we defined
the similarity between two genes as the symmetric
version of the formula above by calculating:

simðgi,gjÞ ¼
simðgi! gjÞ+simðgj! giÞ

2
: ð3Þ

Distance computation for PPI networks

In order to define the similarity between two genes, we
created a network based on the data of the STRING 8.2
database (34), physical and functional interactions. The
network consists of 138 156 interactions including 194
direct interactions between p300 and other proteins. In a
previous study, we have shown that global network
similarity measures are better suited for defining
functionally associated groups of genes (35). We
constructed a mouse-specific adjacency matrix, which
was transformed into a column-normalized adjacency
matrix (A). The random walk starts at a certain node
corresponding to a gene gi at time point t0 and
randomly visits adjacent nodes. The random walk
distance pt+1(gi,gj) is defined as the probability of the
random walker being at node gj at time point t+1 given
that the walker started at gi. For a vector of starting
probabilities p0, the state probabilities pt+1 can be
computed iteratively:

pt+1 ¼ ð1� rÞA� pt+r� p0, ð4Þ

whereby r denotes the restart probability (r=0.7). For
t!1, the state probabilities converge to a stationary
distribution p1 that can be written as:

p1 ¼ ðI� ðð1� rÞAÞÞ�1 � r� p0: ð5Þ
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The matrix I denotes the identity matrix and the starting
probabilities p0 were set to 1 for gi and 0 for all other genes.
For two genes gi and gj, we define a symmetric PPI distance
score by taking the average of the probabilities to
encounter gj when starting at gi and vice versa.

Binary and discriminative random forest classifier

We first developed a binary random forest classifier (36)
for the problem of deciding whether a single gene is an
enhancer target based on the four features: genomic
distance to an enhancer, CSS, PPI distance and GO
similarity (‘binary RF’). The classifier learns to predict
the class from the four features and to output the ratio
of trees that voted for this class. In case of missing values,
we assigned the median GO similarity or PPI distance
value between p300 and all other genes for the respective
feature. We used an implementation of Breiman’s
algorithm that uses random selection of features at each
node to determine a split (37) (R package ‘randomForest’,
version 4.5-34) and to train a random forest of 1000
randomly generated decision trees. The final prediction
was made by selecting among all genes in the interval
the one with the highest probability (i.e. the highest
number of trees voting for it).
The binary RF can yield only a yes/no decision as to

whether a gene is an enhancer target or not, and is not
designed to rank all the candidate genes in the interval.
We therefore implemented a second classifier
(‘discriminative RF’) that evaluates each gene pair gi
and gj in the interval using feature values as well as
pairwise rankings and then decides among the following
outcomes:

(1) gi is the target gene
(2) gj is the target gene
(3) neither gi nor gj is the target

This RF takes 12 input features, corresponding to eight
feature values for both genes (genomic distance, CSS, GO
similarity, and PPI similarity for gi and for gj) and four
features that assign gi either to ‘winner’ (W) or ‘looser’ (L)
or ‘tied’ (equal, E) in comparison with the respective
feature of gj. Since GO and PPI annotations are
incomplete, we added two labels ‘W?’ and ‘L?’ to model
the uncertainty that is associated with gene pairs for which
one value is missing (‘NA’). Then, for each of the four
comparisons between genes gi and gj, a feature f is
assigned to gi:

f ¼

W if valueðgiÞ > valueðgjÞ
L if valueðgiÞ < valueðgjÞ
E if valueðgiÞ ¼ valueðgjÞ
W? if valueðgiÞ � median and valueðgjÞ ¼ ‘NA’
L? if valueðgiÞ < median and valueðgjÞ ¼ ‘NA’

8>>>><
>>>>:

A random forest of 1000 trees was trained using these
12 features. The output consisted of the probabilities for
the three classes and the class with the majority vote. The
final prediction was made by summing over all
probabilities for target gene assignments in pairwise
comparisons for all pairs in the interval and reporting

the gene with the highest sum as the target gene.
A schematic overview of both classifiers is shown in
Supplementary Figure S4.

Statistical analysis

For evaluation of various values of the maximal distance
parameter � on the forebrain and limb data, we used only
the p300 enhancers with distance <� to a differentially
upregulated gene. Depending on the distance parameter
�, it may be that multiple differentially upregulated genes
are located in a given genomic interval. In such cases, we
counted the prediction as a ‘correct prediction’ if at least
one of the upregulated genes was unambiguously predicted
as a target gene by any of the prediction methods.

We calculated the precision of a method as
Ncorrect predictions=Npredictions and recall as
Ncorrect predictions=Nenhancer. Precision indicates the
probability that a prediction is correct and recall denotes
the ratio of enhancers for which a correct prediction could
be made. Precision and recall values are highly similar for
most methods, only differing in cases where multiple genes
are assigned the same maximal score by a method. These
cases were counted as ‘no prediction’ in the precision and
recall calculations.

For the training of the random forest classifiers, we split
the enhancer sets into 80% training samples and
calculated the precision and recall values on the remaining
20% validation samples. This was done 10 times, the
values in Figure 4 represent the means of the different
iterations. For both models, we subsampled the training
set so that each possible outcome occurred an equal
amount of times. The predictions in Supplementary
Data S1 contain leave-one-out predictions for the
�=1000kb data and predictions for p300 enhancers
that are >1Mb away of an upregulated gene. For these
enhancers, random forest classiers were trained on the
complete data set for �=1000 kb.

RESULTS

Conserved synteny predictions of enhancer targets have
low recall

Previously identified candidate enhancer regions have
been shown to be enriched in the vicinity of transcription
factors and developmental genes (2,38) and to maintain
conserved synteny (15,16). However, it is not clear to what
degree conserved synteny or genomic proximity can be
used to predict target genes. We therefore initially
compared the performance of predictions based on
genomic proximity (i.e. the nearest gene is taken to be
the target of an enhancer), conserved synteny and
randomly choosing one of the genes in a window around
the enhancer. The CSS was calculated on the basis of a
conserved association between the enhancer and the
promoter regions of putative target genes in related
genomes (Supplementary Figure S1). We also evaluated
ortholog predictions based on protein sequence similarity,
but this approach showed slightly lower precision
and recall values than using the genomic alignments
of promoter sequences (Supplementary Figure S2).
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The conserved syntenies were weighted by the
evolutionary distances between mouse and the target
species. For each of the three methods, we evaluated
the quality of predictions by calculating precision and
recall for various maximal distance thresholds � that
define a genomic window centered around the enhancer
region. Several studies have outlined that HCNEs and
thus putative enhancers span genomic regions of
several hundreds of kilobases around their target genes
(2,38). We therefore assessed the performance of
predictions for � 2 250,500,1000f gkb. We chose an
arbitrary maximal cutoff of �=1000 kb because the
great majority of experimentally validated enhancer/
target gene pairs are separated by less than this
amount (c.f. Figure 1A).

At present, there is no database of enhancer targets, and
information in the literature is sparse. We therefore
compiled a set of 31 known enhancer-target gene
interactions from the literature in order to estimate the
quality of predictions that are based on genomic
distance or conseved synteny. We included all interactions
from either human or mouse that were identified either by
observations of phenotypes due to genomic
rearrangements (14), similar activation and expression
pattern of enhancer and target gene (39) and 3C
experiments (24). We assumed that enhancer activities

are conserved in human and mouse and mapped human
enhancers to the homologous sequences using blastz
alignments (27) (See Supplementary Table S1 for a list
of the 31 experimentally validated enhancer-target gene
interactions). Synteny-based predictions showed a
precision �90% in contrast to �61% for genomic
distance (Figure 1 A–D). However, recall values
for synteny-based predictions only reach a level of 69%
for �=250kb, 62% for �=500kb and only 37% for
�=1000 kb, probably because it is not usually possible to
assign an enhancer unambiguously to a single target gene
on the basis of synteny alone. In all comparisons,
predictions based on CSS and genomic distance perform
substantially better than random.
Binding by the transcriptional coactivator, p300 is

thought to be a marker for enhancer activity. For
instance, in one series of lacZ reporter gene assays in
transgenic mice, 75 of 86 (87%) p300 ChIP-seq peaks
showed enhancer activity (6).
In the following, we will refer to the p300 ChIP-seq

peaks as ‘p300 enhancers’. It should be noted that a
p300 ChIP-seq peak does not necessarily represent a
biologically relevant enhancer, which is a limitation of
our approach. For our evaluation, we extracted 1862
enhancers from a set of about 4500 p300 enhancers
identified by Visel et al. (6) under the assumption that
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Figure 1. (A) Distance distribution between enhancers and target genes for 31 regulatory interactions from the literature. (B–D) Evaluation of
precision (B), recall (C) and average precision and recall (D) for predictions based on conserved synteny, genomic distance or random predictions of
a gene in the genomic interval defined by a maximal distance threshold � ¼ 250,500,1000f g kb around the enhancer. (E) Distance distribution
between p300 enhancers and putative target genes (6). (F–H) Evaluation of precision (F), recall (G) and average precision and recall (H) on different
sets of p300 enhancers. Although literature data and ChIP-seq data show substantially different distributions of enhancer target gene distances,
conserved synteny shows the highest precision values for both data sets.
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upregulated genes located in the same genomic region
as p300 enhancers represent the target genes. Although
the target genes of p300 enhancers are likely to also be
differentially expressed, we note that this assumption may
not be correct in all cases because the upregulation can be
due to secondary effects. As with the gold-standard targets
from the literature, we compared predictions for various
maximal distance thresholds � 2 250,500,1000f gkb that
define a genomic window centered around the p300
enhancer, and assessed the performance of synteny-
based and genomic proximity-based predictions relative
to random guessing. Figure 1E–H shows precision and
recall values for the predictions based on each of the
two features and random guessing for the merged p300
enhancers from limb and forebrain. In agreement with
our observations on the known target gene interactions,
conserved synteny alone exhibits a higher precision
compared with the use of distance alone. However,
conserved synteny could only unambiguously assign a
minority of enhancers to their target genes leading to a
recall of <20% for �=1000kb.
The difference in the quality of predictions for the two

sets is likely to be related at least partially to the different

distribution of distances between enhancer and target gene
(Figure 2A and E). The results do suggest that using
conserved synteny or genomic distance alone is not able
to generate accurate target gene predictions for the p300
enhancers.

GO similiarity and proximity in PPI networks may be
used to improve prediction of enhancer target genes

The above-mentioned results demonstrated that genomic
distance and conserved synteny are of limited utility in
predicting the target genes of p300 enhancers. Although
CSS has reasonably high precision values, it often fails to
unambiguously assign an enhancer to a target gene
because multiple genes in the interval exhibit the same
degree of conserved synteny. This accounts for 20–50%
of p300 enhancers and thus represents a major limitation
in the use of conserved synteny. For instance, seven
p300 enhancers for limb tissues are located in the Sox9
locus and might account for the upregulation of Sox9,
observed by Visel et al. (6). An analysis based on
genomic proximity alone would not identify Sox9 as the
target, and an analysis based on conserved synteny would
identify up to five additional genes in the vicinity as

Figure 2. We hypothesize that the enhancer binding protein and its target genes show a tendency for shared functions such as ‘transcription factor
activity’ and are located in the vicinity of one another in the protein–protein interactome. This is illustrated in the example of the potential regulation
of Sox9 by p300. (A) PPIs involving p300 and SOX9. p300 and SOX9 directly interact with one another (40), and also share a number of known or
predicted intermediary interaction partners in the protein interaction network (34). (B) SOX9 has 21 GO annotations, and p300 has 35 GO
annotations. The eight shared annotations are shown. (C) UCSC Genome Browser view on the Sox9 locus. Seven p300 enhancers from mouse
limb tissue (6) show the highest degree of conserved synteny with the Sox9 promoter region, however, only the enhancers p300.5 and p300.6 can
unambiguously be assigned to the Sox9 promoter. For the remaining enhancers, multiple genes including Sox9 exhibit the same degree of conserved
synteny. However, high GO similarity between p300 and Sox9 as well as their proximity in the PPI network suggest that the target gene of these
enhancers is Sox9.
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potential targets. In some cases, transcription factors
regulate genes with which they also physically interact,
e.g. Runx2 and Dlx5 (41,42). We therefore hypothesized
that p300 and its targets are located more proximal to
each other in PPI networks (Supplementary Figure S5)
than p300 and non-target genes. We additionally
hypothesized that functional similarity between p300 and
targets is greater than between p300 and non-targets. p300
has a number of GO annotations related to organ
development, regulation of transcription factor activity,
response to stimuli including calcium, transcription
cofactor activity and others (Supplementary Table S2).
GO analysis of the limb and forebrain upregulated genes
from Visel et al. (6) revealed that both sets are significantly
enriched in terms such as ‘developmental process’ and
‘transcription factor activity’ (Supplementary Table S3).
These observations reflect the known role of p300 in
development (43,44).

If we take the upregulation of Sox9 in the above-
mentioned experiment as evidence that Sox9 is the target
gene of the enhancers, then the observation that Sox9 is a
direct protein interaction partner of p300, and that it
shares a number of GO annotations with p300 could be
used to identify Sox9, and not one of the other five genes
showing conserved synteny, as the correct target gene.
This observation motivates our approach (Figure 2).

We therefore tested whether GO similarity and PPI
distance can be used to resolve the ambiguity in cases
where CSS fails to unambiguously assign an enhancer to
a target gene. Figure 3 shows that in case of ties in CSS,
target genes show higher GO similarity and are closer to
p300 in PPI networks than non-target genes. This
observation motivated us to develop an integrative
approach that combines all four features in a random
forest classifier.

Accurate target gene prediction using random forest
classifiers and combination of features

Decision tree induction is a supervised learning method
for classifying data. During the learning phase, a tree
is constructed iteratively, whereby at each node a test is
derived that splits the local training set into two subsets so
that the heterogeneity of the resulting subsets is
minimized. Typically, the learning phase is stopped as
soon as the heterogeneity falls below a certain threshold.
Random forests (RFs) are an extension of decision trees to
collections of trees that use randomization in the selection
of features for splitting the learning sample at each node
(37). The final classification is made by taking the majority
vote for all trees in the forest (36). Alternatively,
classification probabilities can be defined as the ratio of
trees voting for a certain class.

We evaluated two random forest approaches
(Supplementary Figure S4). The first was a binary RF
classifier which separately calculates the probability of
each gene of being a target; these probabilities can then
be used to rank the k genes in a given interval according to
the probability of being a target gene. The second
approach involved a discriminative RF classifier which
compares all gene pairs in the interval and chooses the

gene that was the most frequently predicted target gene
in the set of all pairs (see ‘Materials and Methods’
section).
In order to make the methods more easily

comparable, we will use the average precision-recall
(Precision+Recall=2) as performance measure, ana-
logously to Schweikert et al. (45). Individual precision
and recall values for limb and forebrain target gene
predictions can be found in Supplementary Tables S4
and S5. Both classifiers were compared with the genomic
distance-based method. Figure 4A and B shows the
average precision-recall values of the three approaches
for � ¼ 250,500,1000f gkb. Increasing � leads to higher
number of genes in an interval. For �=250kb an
average of 8.5 genes is located in the genomic window
around the putative p300 from the limb data set. This
number increases to 25 genes for �=1000 kb.
Supplementary Table S6 shows the average number of
genes and differentially expressed genes per interval.
Binary and discriminative random forest classifiers show
substantially better performance than the distance-based
approach. This is true for all comparisons of random
forest classifiers versus predictions based on any single
feature (Supplementary Tables S4 and S5).
Since cases have been reported where the distance to the

target genes exeeds 1Mb, we also applied the classifier on
a putative p300 enhancers that are located up to 2Mb
away of the nearest differentially expressed gene. The
average precision-recall value stays almost constant at a
level of 58% (Supplementary Tables S5).
We also applied the classifier on 1372 p300 forebrain

enhancers and 1324 limb enhancers that are not in
proximity of an upregulated gene (�=1000kb). The
predictions include previously reported Bmp7 limb
enhancer and a Sox2 enhancer, that is active in
rhombencephalon (46,47), suggesting that at least a
proportion of the predictions is valid. As expected, GO
enrichment analysis shows a similar pattern as the
upregulated genes from Visel et al. (Supplementary
Tables S3, S8 and S9). It is likely that the enrichment of
‘transcription factor activity’ and ‘developmental process’
is a consequence of using GO similarity in the prediction.
However, both predicted target gene sets include
significantly enriched terms that are unique to the
respective set, such as Notch and Wnt signaling in limb
and nervous system development in forebrain
(Supplementary Tables S8 and S9). Supplementary
Figure S6 shows the distributions of distances between
p300 enhancer and predicted target genes. Forebrain
enhancer-target gene pairs have a median distance of
388.2 kb with a median of two intervening genes and
limb pairs have a distance of 395.3 kb spanning over
three genes. A complete list of predictions for the p300
peaks is provided as Supplementary Data S1.

Prediction of Gli3 target genes in a limb ChIP-chip
data set

To test whether our method might be applicable to
experiments with other enhancers, we analyzed a ChIP-
chip data set for Gli3 in mouse limbs (26). Gli3 is a
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transcription factor that is activated upon Shh signaling
which specificies the anterior posterior axis in the
developing limb bud and thus regulates the number of
digits. Vokes et al. defined a high-quality set of 5274
Gli3 bound regions of which 2430 are located <1Mb
away of an Shh-repsonsive gene as identified by
differential expression (26). Similar to the p300 data,
conserved synteny predicts targets with higher precision
but lower recall and the random forest approaches
showed substantially better performance than any single
feature-based prediction (Figure 4C and Supplementary
Table S7).

DISCUSSION

Current research on long-range regulatory interactions is
strongly focused on the computational detection and

experimental validation of cis-regulatory elements (4,9).
ChIP-seq experiments on the transcriptional coactivator
p300 have proven to be a highly reliable method for
experimental detection of enhancer regions in various
tissues (6,8), but the identified sequences still have to be
linked to their transcriptional targets.

Previous studies have postulated that evolutionarily
constraints on enhancer-target gene interactions are
likely to be responsible for the maintainance the conserved
synteny in large genomic intervals (15,16,25). Kikuta et al.
and Akalin et al. defined target genes as transcription
factors with an HCNE density peak in human-zebrafish
conserved-syntenic regions that were termed GRBs
(16,25). This is in agreement with the observations that
HCNEs are clustered around developmental genes and
transcription factors (2,48), but it may not reflect the
general pattern of enhancer-target gene interactions since
previously defined GRBs (25) do not represent an
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Figure 3. Since conserved synteny often fails to unambiguously predict a target gene, we tested whether GO similarity and PPI distances may help to
resolve cases where multiple genes exhibit equal degrees of conserved synteny. For p300 enhancers from limb and forebrain, we identified all genes in
intervals at �=500kb with highest CSS but that cannot uniquely be assigned to the enhancer. We grouped this set into CSS classes that correspond
to evolutionary distances from Supplementary Figure S3 with the exception that the label ‘fish’ indicates 1.72<CSS� 2.3] and ‘multiple’ corresponds
to CSS>2.3. (A and B) GO similarities for target and non-target genes for p300 limb (A) and forebrain (B) enhancers. (C and D) PPI distance for
target and non-target genes for p300 limb (C) and forebrain (D) enhancers. Comparison of target genes versus non-target genes within these subsets
showed for all subclasses that target genes show a tendency for higher GO similarity and closer distances in PPI networks. *P < 0.05, Wilcoxon test
with Benjamini–Hochberg multiple testing correction.
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exhaustive genome-wide collection of genes targeted by
long-range regulation. For example, only 579 (12.7%) of
ChIP-seq peaks from limb and forebrain overlap with
aligned regions between mouse and zebrafish genomes
and only 64 (7.7%) of upregulated genes in limb and
forebrain overlap with the mouse orthologs of the GRB
target genes. Therefore, p300 ChIP-seq data define a more
general class of enhancer-target gene interactions that are
less conserved and not exclusively restricted to
transcription factors.

Two observations prompted us to use proximity in PPI
networks and GO functional similarity as features for
predicting enhancer targets. Feed forward loops and
autoregulatory loops are common in gene regulatory
networks (49). p300 binding in genomic regions that
display conserved synteny with the Sox9 promoter
suggests that it could be involved in the activation of
SOX9 transcription (Figure 2). p300 also directly interacts
with the SOX9 protein (40) and shares a number of known
or predicted intermediary interaction partners in the
protein interaction network (34). This suggested the
hypothesis that the enhancer binding protein might
display a relative proximity to its targets in the protein
interaction network. Second, we hypothesized that the
regulator would have a higher GO similarity to its
targets than to non-target genes. Although GO similarity
alone predicts target genes at larger distances (� > 500 kb)
with comparable recall values as genomic distance
(Supplementary Table S4, S5 and S7), it cannot be
utilized to predict non-transcription factor targets of
very specific functions of p300 targets that are involved
in cell adhesion (50) or erythropoiesis (51). The motivation
of the random forest approach was therefore to exploit the
complementary aspects of the four features. Our results
demonstrate that the combination of features dramatically
improved the prediction of target genes in genomic
intervals of up to 2Mb centered at the location of a
p300 enhancer, with a recall of 58% compared with only

27% for genomic proximity and 12% for conserved
synteny (Supplementary Table S5). The analysis of a
second data set on Gli3 binding in embryonic mouse
limbs displayed a similar advantage for the random
forest predictions.
Since available data on enhancer-target gene

interactions are extremely limited, we chose to interpret
an upregulation of a gene in the vicinity of an enhancer to
be the effect of direct regulation. This represents a
limitation of our study, as the assumption that genes not
found to be differentially expressed are not target genes
may be incorrect, for instance because the differential
expression may occur at a time point that was not
measured. Another limitation is the assumption of our
model that enhancers can regulate only one target gene.
Enhancers may be active in various tissues (2) and
multiple enhancers may coordinate the expression of one
target gene (24). Nevertheless, under the assumptions of
our study, we have shown that genomic distance,
conserved synteny, PPI distance and functional similarity
can be combined to dramatically improve predictions of
the target genes.
The random forest classifiers that have been trained on

limb and forebrain enhancers cannot be directly
transferred to enhancer-target gene prediction in other
tissues. Using the limited data now available, we have
observed that the random forest classifiers are specific
not only for the immunoprecipitated factor but also for
the tissue (Supplementary Figure S7). However, more data
will be needed to evaluate if this reflects variability
between experiments or tissue specificity characteristics
of regulatory interactions. With this proviso, our
methodology can be applied to new ChIP-seq data to
prioritize candidate enhancer-target gene interactions for
validation experiments, and may also be useful for
assessing the most biologically relevant hits identified by
high-throughput chromosome conformation capture
assays that have been developed to globally map

Figure 4. Evaluation of random forest classifier predictions on p300 ChIP-seq data for (A) limb, (B) forebrain and (C) 2430 Gli3 bound regions
identified from ChIP-chip experiments (26). Average precision-recall values for predictions based on distance, and two random forest classifiers are
shown. For the random forest models, the data were split into 80% training and 20% validation sets. The results shown are mean values after
10 repeated evaluations and standard errors. Combination of genomic, functional and protein interactome data allows correct target gene
identification in 56–61% of cases for genomic intervals of 2Mb.
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chromatin interactions (23,52,53). ChIP-seq is still a
relatively new protocol and contains biases that are
poorly understood (54); however, with more experimental
data sets becoming publicly available, more detailed
analyses can be performed to further evaluate how to
combine functional classification of binding events and
the association to target genes into an integrative
downstream analysis of ChIP-seq experiments.

SUPPLEMENTARY DATA

Supplementary Data are availble at NAR Online.
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