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Abstract

We define the concept of dependence among multiple variablesusing
maximum entropy techniques and introduce a graphical notation to de-
note the dependencies. Direct inference of information theoretic quan-
tities from data uncovers dependencies even in undersampled regimes
when the joint probability distribution cannot be reliablyestimated. The
method is tested on synthetic data. We anticipate it to be useful for infer-
ence of genetic circuits and other biological signaling networks.

1 Two problems

One of the most active fields in quantitative biology is the inference of biological interaction
networks (e. g., protein or genetic regulatory networks) from high throughput data such as
expression microarrays [1]1. In these problems, one measures (simultaneous or serial)
values of expressions of genes under different conditions and treats them as samples from
a joint probability distribution (PD). The goal is to infer the genetic network based on
statistical dependencies in this PD.

This involves a conceptual and a technical problem. First, surprisingly, even now there is
still no agreement on what the dependence, the interaction,is in a multivariate setting. In-
stead of a universal definition, standard statistical methods [2, 3] have produced a multitude
of dependence concepts applicable in restricted contexts,such as normal noise, binary, bi-
variate, or metric data, etc. Of these, the notion ofconditional(in)dependence in the form
of Bayesian networks(BN) [1] has proved to be very useful in biological applications.
However, it is insufficient to deal with regulatory loops, orto distinguish independent vs.
cooperative regulation of a gene by others (see below). Further, statistical dependence is a
symmetric property [4], while graphs of BNs are directed. Thus, to infer interaction net-
works, we must first carefully define what we mean by multivariate statistical dependence.

The goal is to partition the overall statistical dependence, that is, the deviation of the joint
PD (JPD) from the product of its marginals, into contributions from interactions of different
kinds (among pairs of variables, triplets, etc.), and, better yet, from specific combinations
of variables within a kind. Many ideas have been suggested [2, 5, 6], but the most natural

1The literature on reverse engineering biological networksdevelops quickly, and we do not try
to provide a exhaustive bibliography. On the other hand, since this paper focuses on fundamental
concepts of statistical dependence, a considerable efforthas been expended to make the relevant part
of the bibliography complete.
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approach is to quantify the new knowledge that comes from looking at a complete JPD vs.
its approximations under various independence assumptions. For example, in contingency
tables analysis, one studies deviations of the number of observed counts from their expec-
tations under such assumptions [7, 8, 9, 10, 11]. Such discussion is limited to categorical
data and, importantly, confounds the definition of dependence with sampling issues. In-
formation theory [12, 13] provides tools to treat continuous and categorical data uniformly
[14, 15] and to generalizes bivariate dependence measures to multivariate cases based on
distributions rather than counts. However, some suggestedinformation theoretic measures
[16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26] are not necessarilynonnegative, or involve
averaging logarithms of fractional powers of PDs. Thus theycannot characterize sizes of
typical sets and have not become universally accepted. Instead, one notices that the max-
imum entropy (MaxEnt) distributions [27, 28] consistent with some marginals of the JPD
introduce no statistical interactions beyond those in the said marginals. Thus the JPD can be
compared to its MaxEnt approximations to separate dependencies included in the low order
statistics from those not present in them [4, 23]. This approach completely characterizes
multivariate interactions for binary [29, 30] or exponential [31] distributions. In general, it
led to a definition ofconnectedinteractions of a given order, that is, the interactions that
need, at least, the full set of marginals of this order to be captured [32]. However, there
has been no successful attempt of definingdependence among variables, that is, localizing
(connected) interaction to particular covariates.

The second, technical, problem emerges if we agree on the measures of dependence. The
usual approach then is to use the experimental data to infer the JPD in question and evaluate
these measures for it2. Unfortunately, the distributions may be severely undersampled.
To fight this, the field has focused on a simplistic approach [33, 34]: (a) assume some
dependence structure; (b) regularize the JPD consistentlywith it and learn it from the data;
(c) evaluate the quality of fit; (d) repeat until the dependence structure with the best fit
is found. Validity of such analysis is sensitive to the choice of the regularization, and a
bad choice may lead to misestimation of dependencies. As a rule, inferring a complicated
object (the JPD) in order to only find its simple property (thedependencies) is not a good
idea [35], and adirect estimation of dependencies without learning the JPD is preferred3.

From Shannon’s work [12] and its later developments [4, 32] we know that we have to look
at information theoretic quantities to measure dependence. Many of these are differences
of (marginal, conditional) entropies of the JPD. While earlier works [4, 19] relied on good
sampling, we now know that, at least under some conditions, entropy may be estimated
reliably even when inferences about details of the underlying PD are impossible4. Thus the
direct estimation of dependencies has a chance even for undersampled problems.

In this paper we deal with both the conceptual and the technical problem. First, expanding
on [4, 32] (see also [39] for axiomatization), we systematically characterize dependencies
among variables. Second, we apply direct entropy estimation methods to undersampled
synthetic data to show that interactions can be uncovered even in that regime.

2We deliberately remain vague about the identity of the covariates. These can be the simultaneous
gene expressions, in which case there is a big leap between inferring statistical dependencies and
reconstructing the network. These also can be the time lagged expressions, or their whole time
courses, which makes the reconstruction easier, or something altogether different.

3Direct estimation of the quantity of interest without the intermediate inference of the underlying
PD has been useful in various contexts, in particular for estimating entropies [36, 37].

4The reader is referred to [38] and tomenem.com/˜ilya/pages/NIPS03 for overviews.

menem.com/~ilya/pages/NIPS03


2 Definitions

Suppose we have a network ofM covariatesXi, i = 1, . . . , M , (callednodes, expressions,
or genes) that take random valuesxi respectively with the joint probabilityP (x). The total
statistical dependence among the variables is given by their multiinformation, that is, the
Kullback–Leibler divergence between the JPD and the product of the marginals [32, 39]5,

I[P ] :=
∑

{xi}

P (x) log2

P (x)
∏

i P (xi)
=

〈

log2

P (x)
∏

i P (xi)

〉

=
∑

i

S[Xi] − S[X] , (1)

where
∑

’s represent summations for discrete and integration for continuous variables re-
spectively6, andS[X ] := −∑

P (x) log2 P (x) is the entropy ofP (x).

Following [32], we localize these bits of dependence to statistical interactions of different
orders. If allm-way marginals,P (xi1 , xi2 , . . . , xim

), are known, then one finds an approx-
imation to the JPD that respects the marginals, but makes no additional assumptions about
the JPD7. This is given by the MaxEnt, or minimum multiinformation, problem [4, 27, 32]:

P (m) := arg max
P ′,{λ}

{

S[P ′] −
M
∑

i1<···<im

∑

xi1 ...xim

λi1...im
(P ′

i1...im
− Pi1...im

)

}

, (2)

whereλ’s are the Lagrange multipliers enforcing the marginal constraints; differentλ’s are
distinguished by their arguments. The arguments of all functions are listed in their lower
indices, e. g.,P1 := P (x1). No indices means dependence on all variables, while6 i on all,
butXi. Further, a distribution with lower indices is a marginal, e. g.,P12 :=

∑

6x1 6x2
P .

A solution of any MaxEnt problem with marginal constraints has a form of a product of
terms depending on the constrained variables [40]. In particular, for Eq. (2),

P (m) =
∏

i1<···<im

fi1...im
, f ≥ 0, (3)

P
(m)
i1...im

= Pi1...im
, ∀{i1, . . . , im}, (4)

wheref ’s, again distinguished by their arguments, are to be found from the constraints.
Note the Boltzmann machine or Markov network structure of this MaxEnt distribution
[1, 41]. In general, no analytical solution forf ’s exists. However, an algorithm called the
iterative proportional fitting procedure(IPFP) [42], which iteratively adjusts a trial solution
to satisfy each of the constraints in turn, converges to the true solution [40].

FindingP (m) andP (m−1) defines connected information [32]

I(m)[P ] :=

〈

log2

P (m)

P (m−1)

〉

; (5)

I[P ] =

M
∑

m=2

I(m)[P ] , (6)

5We remind the readers that the Kullback–Leibler divergence, DKL[P ||Q] =
∑

x
P (x) log

2
P (x)/Q(x) is a natural information–theoretic measure of dissimilarity between PDs.

It is nonsymmetric, nonnegative, and it is zero iffP = Q [13].
6In this, work we do not aim at mathematical rigor of the measure theoretic information theory.

In particular, we assume that all quantities of interest exist for all distributions considered.
7All JPDs constrained by the same marginals are said to form a Fréchet class [2]. For metric

variables and simple constraints, these classes are well studied. We know parametric forms for some
of them, can check if the constraints are compatible, and if they determine the JPD uniquely.



which measures the amount of statistical interactions accounted for bym-way, but not by
m − 1-way marginals. This is similar to connected correlation functions or cumulants.

In the same spirit, to determine if a particularm–way interaction contributes toI, we may
check if fixing the correspondingPi1...im

recovers any dependencies not already contained
in a reference MaxEnt distributionQ∗(i1...im) constrained by some other marginals. That
is, we define theinteraction multiinformation

∆(i1...im) :=

〈

log2

Q(i1...im)

Q∗(i1...im)

〉

= I(i1...im) − I∗(i1...im), (7)

whereQ( · ) is the interaction MaxEnt distributionsatisfying all constraints ofQ∗( · ) and
additionally havingQ( · )

i1...im
= Pi1...im

. I( · ) andI∗( · ) are multiinformations ofQ( · ) and
Q∗( · ) respectively. By positivity of the Kullback–Leibler divergence,∆( · ) ≥ 0. Thus if
∆( · ) > 0, accounting for the marginalPi1...im

recovers more multiinformation, and we
say that thecorresponding interaction or dependence is present with respect toQ∗( · ).
The problem is that∆( · ) depends on the choice ofQ∗( · ). To test the null hypothesis
of no dependencies, we must select the referenceQ∗( · ) that minimizes the interaction
information. This guarantees that interactions are acceptedonly if they cannot be reduced
to some other statistical dependencies in the network. According to Thm. 1 (see Appendix),
such reference distribution is given by

Q∗(i1...im) = f 6i1 · · · f 6im
, f ≥ 0 (8)

Q
∗(ii...im)
6i
k

= P6i
k
, ∀k = 1 . . .m. (9)

ThisQ∗( · ) preserves all marginals of the original JPD except those that involve allm co–
variates being examined for an interaction. This is similarto the Type III Sum of Squares
ANOVA for testing significance of predictors. In fact, sinceDKL is equal toχ2 asymp-
totically, the similarity is not accidental. Dependence defined by this choice ofQ∗( · ) is a
generalization of the conditional dependencewith the rest of the network as a condition.

The interaction PD, which additionally preserves the jointstatistics ofXi1 , . . . , Xim
, but

nothing extra, is

Q(i1...im) = f 6i1 · · · f 6im
fi1...im

, f ≥ 0 (10)

Q
(ii...im)
6i
k

= P6i
k
, ∀k = 1 . . .m, (11)

Q
(ii...im)
i1...im

= Pi1...im
. (12)

Using suchQ andQ∗ in Eq. (7) definesirreducible m–way interactions (dependencies)
among particularm variables. We denote these dependencies graphically by edges coming
from the variables and meeting at anm–edge vertex, see Fig. 1. This graphical notation
generalizes BNs and [32], were the only goal was to denotem–way interactions among all
combinations of co-variates simultaneously.

3 Examples and properties

We consider a few examples forM = 3 (largerM is analyzed similarly). First, a regulatory
cascade, or a Markov chain:X1 → X2 → X3, P (x1, x2, x3) = P (x1)P (x2|x1)P (x3|x2).
Looking for X1X2 dependence, we haveI∗(12) = I[X1, X3] + I[X2, X3] ≤ I(12) =
I[X1, X2] + I[X2, X3], where the inequality is due to the information processing inequal-
ity, and the bound is reached only in special cases. ThusX1, X2 are (generically) depen-
dent. Similarly,X2, X3 are dependent; but∆∗(13) = 0, andX1, X3 are not (even though



their marginal mutual information, induced by other interactions, is not zero). Checking
for the triplet interactions, we findI∗(123) = I[X1, X2] + I[X2, X3] = I(123), thus no
such dependencies are present. If now insteadX2 regulatesX1 andX3, one sees that the
dependence structure is the same. Both networks correspondto the graph in Fig. 1(a).

A more interesting case is whenX1,
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Figure 1: Examples of dependencies forM = 3.

X3 regulateX2 jointly. Here many
possibilities exist, not all of them
realizable in terms of BN modeling.
First, consider independent regula-
tion: to predict X2, one does not
need to know the values ofX1 and
X3 simultaneously,P (x2|x1, x3) =
f12f23, e. g., P (x2|x1, x3) ∝
exp

[

−a(x2 − x1)
2 − b(x2 − x3)

2
]

(this corresponds toOR and AND
gates [32], to the Lac–repressor [43],
and to all regulatory models based
on independent binding of transcrip-
tion factors to the DNA [44]). If
P13 = P1P3, then the dependency structure is again as in Fig. 1(a). If inaddition there
is a regulationX1 → X3, so thatP13 6= P1P3, then∆(13) = DKL[P ||Q∗(13)] ≥ 0, and
∆(123) = 0. The dependency graph now has a loop in it, as in Fig. 1(b).

Further, in the joint regulation case one may consider a nonfactorizableP123 with all
pairwise marginals factorizable. An example is theXORgate [32, 43] (we were un-
able to construct an explicit, normalized example for continuous variables). In this case,
∀i, j, I(ij) = 0. ∆(123) > 0, and the dependence structure is as in Fig. 1(c). Com-
binations of two- and three–way dependencies are also possible [Fig. 1(d–f), etc.]; for
example, an explicit construction for the case (e) isP123 ∝ exp[−a(x2 − x3x1)

2]P1P3.
Such higher order dependencies are uncommon in physics, which usually deals with low
order interactions among many variables (for example, the Hamiltonian for a spin system
is H = −∑

ij Jijσiσj ; thus the JPD of spins has no interactions of orderm > 2). In
contrast, combinatorial regulation in genetics requires considering higher order models.

While such detailed classification is overwhelming for large M , some general statements
may be proven for our choice ofQ∗, Q. In particular, similar to Eq. (6), we have

I[P ] ≥
∑

all subsets of{Xi}
∆(subset). (13)

Here the inequality is the result of our conservative approach to identification of dependen-
cies. To prove it, we order allm–way dependencies in an arbitrary way. We then evaluate
the interaction information for the first dependency withP (m−1) as the reference distri-
bution, and take the interaction PD for each dependency as the reference PD for the next
one. Summing allm–way interactions givesI(m), and summing overm results inI[P ] [cf.
Eq. (6)]. On the other hand, according to Thm. 1,∆( · ) evaluated this way is not smaller
than the one with the references Eq. (8). This proves the above inequality.

For M = 3, an interesting illustration of Eq. (13) isP123 = P1 δ(x1 − x2) δ(x2 − x3).
We correctly identify all interactions as reducible (all∆’s are zero). However, to account
for the multiinformation in this PD, (any) two pairwise interactions must be invoked. The
degeneracy is lifted if, for example, noise breaks the symmetry amongX ’s.

Finally, we note another interesting property of our definition. For continuousxi, the
presence of interactions does not depend on (nonsingular) reparameterizations of variables
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Figure 2: Inferring regulatory networks fromN samples. We used the NSB [36] method to
estimate the entropies (with error bars) of the JPD and its marginals directly. The method
does not work forQ∗(123). Thus IPFP was applied to the counts and the entropyS∗(123)

of the solution was evaluated and extrapolated for1/N → 0 following Strong et al. [46] to
account for the sample size dependent bias. The statisticalerror for each sample sizeN was
determined by bootstrapping, and the resulting extrapolation error was used forδS∗(123).
This approach works since the MaxEnt constraints, like those in Eq. (2), are linear in the
unknown JPDP , making the biases ofS[P ] andS∗(123) behave similarly. Finally,∆( · )
were calculated as the differences of the appropriate entropies, andδ2∆( · ) as the sums of
squares of the entropy errors. (a) Network in Fig.1(a). To the left of the vertical dotted
line, N ≈ 3000 & 2S∗(123) ≪ K ≈ 125000, the sample size corrections are reliable, and
all entropies are known well. There is evidence only forX1X2 andX2X3 interactions,
just as it should be. For smallerN , the method of Strong et al. fails, but NSB works until
N ∼ 21/2S[P ] ≈ 60. For pairwise interactions, we may replaceS∗(123) by S[P ] (denoted
by smaller markers on the plot) and, sinceE(13) stays zero nonetheless, andI[X1, X2] +
I[X2, X3] = I[P ], we still recover the interactions correctly. (b) Network in Fig. 1(b).

Again, to the left of the line,N ≈ 700 & 2S∗(123)

, all entropies are determined reliably,
and there is evidence for all three pairwise interaction, but not for the triplet interaction.
To the right of the line, NSB still works, but now we cannot disentangle the loop from
the three–way dependence without estimatingS∗(123). (c) Network in Fig. 1(f). Only the
regimeN & 2S∗(123) ≈ 5000 is shown. The evidence for all three pairwise interactions
and for the triplet interaction is barely significant for small N but grows fast.

that do not mix them,xi → yi(xi) (see [2] for a discussion of importance of this):

∆( · )[P (x1, . . . , xM )] = ∆( · )[P (y1, . . . , yM )]. (14)

This is true since such transformations do not change factorization properties of the Max-
Ent distributions, and the Jacobians cancel in the definition of ∆( · ). Note that, while the
definition is reparameterization invariant, inference of distributions cannot be done in a
covariant way [45]. The invariance vanishes if instead ofP only a sample from it is given.

4 Inferring networks from data

A big advantage of our definition of statistical dependencies in terms of the MaxEnt ap-
proximations is that it can be applied even when the underlying PDs are undersampled,
and the corresponding factorizations cannot be readily observed. ForK, the cardinality
of a variable8, larger than the number of samples,N , we cannot estimate the PDs reli-
ably, but entropic quantities, and, therefore, the interactions are inferable4 (some progress

8In genomics, continuous expression levels are routinely discretized into three states: up, down,
and baseline. Thus we decided to focus on the discrete case inview of its relevance and concep-



is possible even forN ∼
√

K). To show this, we used Dirichlet priors [36] to gener-
ate random probability distributions with different interaction structures,M = 3, and
with marginal cardinalitiesKi ≈ 50. We generated random samples of different sizes,
N = 50 . . . 125000 from these distributions and tested the quality of inference of the de-
pendencies as a function ofN . To measure it, we used theevidencefor some dependency,
E( · ) := ∆( · )/δ∆( · ), whereδ∆( · ) is the statistical error of the interaction multiinforma-
tion. If E( · ) is large, the dependency is present. According to Fig. 2, proper recovery is
possible forN ≪ K = K1K2K3 with few assumptionsabout the form of the PDs.

With modern entropy estimation techniques [36], our approach will work even for severely
undersampled JPD. The bottleneck is the estimation of the maximum entropy consistent
with the marginals, which currently requires substantial sampling of the marginals [46].
This is encouraging, since they may be well sampled when the JPD is not. However, it is
still essential to develop techniques to infer maximum entropies directly. Further, the inter-
action information is the difference of entropies. It may besmall when its error, which is
a quadratic sum of the entropy errors, is large. This leads touncertainties about dependen-
cies even for reliably estimated entropies, see the smallN region in Fig. 2(c). Therefore, a
method that directly estimates∆ will be preferred over another entropy–based technique.
Finally, as in Fig. 1(a), variables may have nonzero mutual (or higher order) information
and no direct interactions. Thus, ifX2 was unobserved, we would have inferred a depen-
dence betweenX1 andX3. Similarly, spurious higher order interactions may also emerge.
Our method, just like most other assumption–free methods, may fail for hidden variables.

For genomic applications, the number of different expression measurements isN . 100,
and it is not nearly enough to estimate∆’s and to infer the full interaction network of,
say,M ≈ 6000 genes in a yeast. However, for ternary discretization of expressions, with
the Strong et al. entropy estimation, one will not find significant evidence forI(m) beyond
m∗ ∼ log3 N ≈ 4 (or somewhat larger if PDs are far from being uniform). Then one can
replaceP by P (m∗) in Eq. (8) and study interactions up to the orderm∗ with respect to this
JPD. It is possible that most interactions in genomes are of such low orders. Additionally,
if methods like NSB [36] are developed for MaxEnt analysis, one should be able to push
for m∗ ∼ 2 log3 N ≈ 8, and this is the primary goal of our future work.

In summary, we have formalized the concept of multivariate dependence, suggested a way
to infer dependencies from data, tested the suggestion on undersampled synthetic examples,
and hinted at possible applications to genomic research.

Appendix

Theorem 1 Let {C} be a set of noncontradictory marginal constraints andQC be the
MaxEnt distributions satisfying these constraints. Further, let C0 and C1 be additional
constraints (possibly included in{C}), and QC0, QC1, and QC01 be the MaxEnt PDs
satisfying{C} ∪ C0, {C} ∪ C1, and{C} ∪ C0 ∪ C1 respectively. Then

〈

log2

QC01

QC0

〉

≤
〈

log2

QC1

QC

〉

, (15)

where the averaging is performed overQC01.

Intuitively, this says that the interaction multiinformations depend on the order in which
the interactions are considered. Dependency bits will be accounted for by the first marginal
able to explain them, attributing less bits to later constraints. At present, this theorem has
been extensively tested by numerical simulations, but still remains a conjecture.

tual simplicity. Measuring dependencies for continuous variables follows a similar route, with the
estimation of entropies performed by one of the many methodsreviewed in [38].
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