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Abstract

Comparison of protein structures is important for revealing the evolutionary relationship among proteins, predicting
protein functions and predicting protein structures. Many methods have been developed in the past to align two or
multiple protein structures. Despite the importance of this problem, rigorous mathematical or statistical frameworks have
seldom been pursued for general protein structure comparison. One notable issue in this field is that with many different
distances used to measure the similarity between protein structures, none of them are proper distances when protein
structures of different sequences are compared. Statistical approaches based on those non-proper distances or similarity
scores as random variables are thus not mathematically rigorous. In this work, we develop a mathematical framework for
protein structure comparison by treating protein structures as three-dimensional curves. Using an elastic Riemannian metric
on spaces of curves, geodesic distance, a proper distance on spaces of curves, can be computed for any two protein
structures. In this framework, protein structures can be treated as random variables on the shape manifold, and means and
covariance can be computed for populations of protein structures. Furthermore, these moments can be used to build
Gaussian-type probability distributions of protein structures for use in hypothesis testing. The covariance of a population of
protein structures can reveal the population-specific variations and be helpful in improving structure classification. With
curves representing protein structures, the matching is performed using elastic shape analysis of curves, which can
effectively model conformational changes and insertions/deletions. We show that our method performs comparably with
commonly used methods in protein structure classification on a large manually annotated data set.
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Introduction

Comparison of protein structures (or structure alignment) is an

important tool for understanding the evolutionary relationships

between proteins, predicting protein structures and predicting

protein functions [1,2]. In annotating functions of new proteins,

such as those solved in structural genomics projects, sequence

alignment methods may not be sufficient to identify functionally

related proteins when the sequence identities between the query

protein and its related proteins are low (i.e. lower than 20%) [3].

Comparing their structures provides an effective means of

annotating protein functions based on the structural similarity of

proteins since homologous proteins are more conserved in their

structures than sequences [4]. To organize proteins by the

similarity of their backbone structures, databases, such as SCOP

[5,6], CATH [7,8] and FSSP [9] were built for all proteins of

known structures in the protein data bank (PDB) [10] by manual

annotation [5,6], automatic classification [9] or combination of the

two [7,8]. As the structure information is increasing at an

accelerated speed, human annotations have become more time

and resource consuming. Automatic structure alignment methods

developed in the past [11–36] can be largely divided into several

categories according to the specific similarity metrics (distances)

they aim to optimize to achieve the best alignment. The particular

metric used reflects the emphasis of the method on what

constitutes a good alignment between two structures. When using

the same similarity measures, methods differ by how they achieve

the optimal solution through various search algorithms. Several

studies have been performed to comprehensively compare

different structure alignment methods [37–39]. The conclusions

from these studies are that there is still room for improvement in

structure alignment and there is no common standard for assessing

the quality of alignment. Different criteria tend to rank methods

differently and for a particular purpose one method may work

better than the others. But, in general, no one method works better

than others for all purposes. Despite extensive studies in the past,

structure alignment, especially flexible structural alignment (i.e.

one of the structures has undergone some conformational

changes), continues to be a very challenging problem [37–39].

Another problem in structure alignment is to assess the statistical

significance of the similarity between two protein structures. This

problem is partly due to the lack of a proper metric for measuring

the distance between two protein structures [40]. The root-mean-

square-deviation (RMSD) of aligned parts between two structures

has been commonly used to measure the similarity between pairs

of protein structures after they are superposed. However, RMSD

is not a proper distance when different sets of atoms are used to

align different pairs of structures. Other similarity scores have also

been used to derive statistical methods for evaluating significance

of similarities. They suffer from the same drawback of RMSD as
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not being proper distances. In addition, a problem with many of

the current metrics is that the best alignment between two

structures, corresponding to the minimum value of the alignment

metric used, cannot be obtained easily. Heuristic methods are

often used to search the alignment space to find the best

alignment, producing approximate minimum distances with

possible biases.

A previous study aiming to develop a statistical framework for

structure alignment [41] inferred the probability distribution of

similarities of unrelated proteins by performing large scale

alignment of protein structures. The resulting pair-wise alignment

scores are then fitted to an extreme value distribution. It has also

been pointed out that in these frameworks, the commonly used

metric RMSD does not lead to as reliable a measure of structural

significance compared to some ‘‘less proper’’ distances such as the

alignment scores [41]. This raised some concerns over these

statistical frameworks.

In this study, we develop a mathematical framework for protein

structure comparison using a formal distance, a geodesic distance

based on a particular Riemannian metric. Geodesic distances in

elastic shape analysis have been used widely in shape analysis in

computer vision [42–45]. An advantage of this approach is that

the dynamic-programming algorithm can efficiently compute the

optimal alignment between two protein structures. In this

framework, we consider protein backbones as continuous three-

dimensional curves. The alignment of two protein structures then

becomes alignment of the two curves derived from the two

backbone structures. Curves can bend and stretch readily during

alignment so that the flexibility of and variations among protein

structures can be adequately accounted for. Our goal is to develop

a comprehensive framework for statistical analysis of protein structures. This

framework can: (1) Generate optimal matching of protein

backbone structures using shape information, where a formal

distance, geodesic distance, is computed as a measure of the

dissimilarity between shapes of any two protein structures. The

optimal matching of two structures, computed by dynamic

programming algorithm, gives the minimum distance among all

possible matchings of two structures. (2) Compute statistical

averages of a collection of structures using geodesics and geodesic

distances. Such tools can be further advanced to define statistical

models for capturing variations in protein conformations and for

classifying future discoveries into pre-determined classes. That is,

one can generate mean and covariance associated with a set of

protein structures and characterize the central behavior of a

population. (3) Generate optimal deformation of one backbone

into another using geodesic path in the shape space. This work is

an extension of a recent framework for comparing shapes of curves

in Euclidean spaces, called the elastic shape analysis [42,43,46].

The rest of this paper is organized as follows. We first describe

the mathematical framework that is behind our approach to

protein structure comparison. We then use some examples to

illustrate this method in pair-wise structure alignment and in

computing mean and covariance of a group of protein structures.

We further demonstrate the performance of our method using a

large-scale classification of proteins in SCOP database and

compare our performance with some commonly-used methods.

Finally, we conclude the paper with discussions.

Methods

The mathematical framework
We treat the backbone structure of a protein as a parameterized

curve in R3. Given any two such parameterized curves, we desire a

framework that can quantify the differences in shapes of these two

curves. Since the comparisons involve shapes of proteins, the

resulting quantifications should not depend on the rigid motions

and parameterizations of these curves. We will use a Riemannian

framework for this task and the basic idea in this approach is the

following. We represent each parameterized curve by a special

function called the square root velocity function (SRVF) and restrict to

the manifold of such functions under the desired constraints. In

order to compare shapes of curves, we have to remove all the

shape-preserving transformations from this representation. This is

done using an algebraic technique – we form a quotient space of

the original manifold with respect to these shape-preserving

transformation groups. In the resulting quotient space, called the

shape space of elastic curves, one can perform statistical analysis of

curves as if they are random variables. One can compare, match,

and deform one curve into another, or compute averages and

covariances of curve populations, and perform hypothesis testing

and classification of curves according to their shapes. The

mathematical details are provided next.

Elastic representation of protein structures. To derive a

curve from a protein structure, we take the sequence of 3D

coordinates of the backbone atoms N, CA and C from the PDB

[10] file and treat them as the coordinates b(ti) = [b1(ti) b2(ti) b3(ti)],

i = 1,2,…,n, for n atoms. We use ti = i/n so that the parameter lies

between [0,1]. These points become samples along the curve and

we can compute b(t) for any t in [0,1] using interpolation. Note

that in our method it is not necessary for the curve to be arc-length

parameterized, i.e. the distances between b (ti)s need not be same.

Since we optimize over all re-parameterizations of the curves, any

initial parameterization read from the PDB file is just fine.

Let the parameterized curve in R3 derived from the backbone

structure of a protein be denoted as b : [0, 1]RR3. In order to

analyze its shape, we will represent b by its square-root velocity

function: q(t)~ _bb(t)

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
_bb(t)
�� ��q

in R3, where .k k is the standard

Euclidean norm in R3. The SRVF q includes both the ins-

tantaneous speed ( q(t)k k2
~ _bb(t)
�� ��) and direction (q(t)= q(t)k k~

_bb(t)= _bb(t)
�� ��) of curve b at time t. The use of the time derivative

makes SRVF invariant to any translation of curve b. Conversely,

one can reconstruct the curve b from q up to a translation. In

Author Summary

Protein structure comparison is important for understand-
ing the evolutionary relationships among proteins, pre-
dicting protein functions, and predicting protein struc-
tures. Despite its importance, there have been no rigorous
mathematical or statistical frameworks for protein struc-
ture comparison. One notable issue in this field is that with
many different similarity measures used in comparing
protein structures, none of them are proper distances
when protein structures of different sequences are
compared. In this study, we develop a mathematical
framework for protein structure comparison by treating
protein structures as three dimensional curves. A formal
distance, geodesic distance, can be computed for any two
protein structures. In this framework, population-specific
variations within protein families can be characterized
through building probability distributions for structures of
protein families. The mean and covariance computed from
groups of protein structures can also help to improve the
classifications of protein structures. With curves represent-
ing protein structures, the matching is performed using
elastic shape analysis of curves, which can effectively
model conformational changes and insertions/deletions.
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order for the shape analysis to be invariant to scales, we rescale

each curve to length 1. With a slight abuse of notation, we will

denote the rescaled curves by b. Since
Ð 1

0
_bb(t)
�� ��dt~1, we have:Ð 1

0
q(t)k k2

dt~
Ð 1

0
_bb(t)
�� ��dt~1. In other words, the L2 norm of the

SRVF is one. Restricting to the curves of interest, represented by

their SRVFs, we obtain the set

C:fq : ½0,1�?R3j
ð1

0

q(t)k k2
dt~1g: ð1Þ

C is called the preshape space and is the set of all SRVFs representing

parameterized curves in R3 of length one. It is actually a unit

sphere in the Hilbert space L2.

We have mentioned four shape-preserving transformations –

translation, scale, rotation, and re-parameterization. Of these, we

have already eliminated the first two from the representations,

but the other two remain. Curves that are within a rotation and/or

a re-parameterization of each other result in different elements of

C despite having the same shape. The removal of the remaining

two transformations is performed algebraically as follows. Let

SO(3) be the group of 363 rotation matrices and C be the group of

all re-parameterizations (they are actually positive diffeomorph-

isms of the interval ½0,1�). For a curve b, a rotation O [ SO(n)
and a re-parameterization c [ C, the transformed curve is given by

O(b0c). The SRVF of the transformed curve is given by
ffiffiffi
_cc
p

O(q0c). In

order to unify all elements in C that denote the same shape we define

equivalence classes of the type: ½q�~fO(q0c)
ffiffiffi
_cc
p
jO [ SO(n),c [ Cg.

Each such class [q] is associated with a shape uniquely and vice versa.

The set of all these equivalence classes is called the shape space S.

Mathematically, it is a quotient space of the preshape space:

S = C=(SO(n)|C).
Elastic metric. When we deform one curve into another we

are actually generating a continuous sequence of curves, or a path

in the curve space, and a natural question is how long that path is.

The length of this path also quantifies the amount of deformation

in going from one curve to the other. The question changes to:

what should be the metric to measure this path length. An elastic

metric is a metric that measures the amount of bending and

stretching between successive curves along the path and adds them

up for the full path. Mio et al. [44] defined a family of elastic

metrics depending upon how much relative weight is attached to

bending and stretching. Joshi et al. [42], and more recently

Srivastava et al. [45], proposed the SRVF that has the special

property that under this representation, the elastic metric turns

into (using a change of variables) the standard L2 metric. That is,

one can alternatively compute the path lengths, or the sizes of

deformations between curves, using the cumulative L2 norms of

the differences between successive curves along the paths in the

SRVF space. This turns out to be much simpler and a very

effective strategy for comparing shapes of curves, by finding the

paths with the least amounts of deformations between them, where

the amount of deformation is measured by an elastic metric.

Let b0(t) be the velocity function along a curve b(t) and let db0(t)
a perturbation of that velocity function. A Riemannian metric is a

metric that measures the norm of the perturbation Idb0(t)I. If we

represent the vector b0(t)~r(t)H(t), where r(t) is the magnitude of

b0(t) and H(t) is the direction of b0(t). Rather than computing

Idb0(t)I, one can separately compute the norms of these two

components and that defines an elastic metric:

(dr,dH)k k~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

ð1

0

dr(t)j j2 1

r(t)
dtzb

ð
dh(t)k k2

r(t)dt

s
: ð2Þ

The first term in the square-root is the measurement of stretching

and the second term is a measurement of bending in b0(t)

introduced by db0(t). Depending on the values of a and b, one gets

a whole class of metrics called the elastic metrics. This metric is

rather complicated to implement and use in shape analysis of

curves. It was shown by Joshi et al [42] that if we represent a curve

b by its SRVF q, then the corresponding norm on dq(t) is actually

the L2 norm. That is,

dqk k~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1

0

dq(t)k k2
dt

s
: ð3Þ

Thus, the use of SRVF greatly simplifies the use of the elastic

metric.

The so-called preshape space C is a nonlinear manifold because

it is a unit sphere. We cannot perform calculus on this space as if it

is a vector space. Operations such as addition, subtraction, and

multiplication are not available on nonlinear spaces. This means

that we cannot use standard techniques in multivariate statistics for

inferences on C and S. This problem is solved by mapping points

from the manifold to a plane that is tangent to the manifold (at a

certain point), statistics are computed in the tangent space, and

then mapped back to the manifold. Since the mapping back and

forth is unique (under some appropriate constraints), such

computations are well defined and the estimates are consistent.

Tm(S) is the notation for all the functions that are tangent to the

manifold S at the point m. In case of spherical manifolds, it is easy

to visualize what the tangent spaces are.

Shape comparisons and averaging. Once we have a

Riemannian manifold, we can compute distances between points

in that manifold. For any two points, the distance between them is

given by the length of the shortest path (called a geodesic) connecting

them in that manifold. An interesting feature of this framework is

that it not only provides a distance between two protein structures,

thus quantifying differences between their shapes, but also a

geodesic path between them in S. This path has the interpretation

that it provides the optimal deformation of one shape into another.

The geodesics are actually computed using the differential

geometry of the underlying space S. Consider two curves b1 and

b2, represented by their SRVFs q1 and q2. In order to compute

geodesics between their equivalence classes [q1] and [q2], we fix q1

and find the optimal rotation and re-parameterization of q2 to

solve:

(O�,c�)~ arg min q1{
ffiffiffi
_cc

p
O(q20c)

��� ���2

O[SO(3),c[C

: ð4Þ

The optimization over rotation is straightforward, using SVD, but

the optimization over the re-parameterization requires a dynamic

programming algorithm. Please note that the optimal c* is the

matching function between the two backbone structures. Define

q�2~
ffiffiffiffiffi
_cc�

p
O�(q20c�) and compute a geodesic path between q1 and

q�2 in C. Since C is a sphere, the geodesic between any two points

is given by a great circle whose equation is:

a(t)~
1

sin(h)
(sin((1{t)h)q1zsin(th)q�2), ð5Þ

where a is a geodesic path between the given two shapes such

that it is in [q1] at t = 0 and in [q2] at t = 1. Here

h~cos{1
Ð 1

0
Sq1(t),q�2(t)Tdt

� �
is the distance between the two

Mathematical Framework for Structure Comparison
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equivalence classes in S, i.e. d([q1], [q2]) = h. This h is a proper
distance in the shape space as it satisfies all the three properties of

a distance function, including the triangle inequality. In practice,

the matching function c is represented as a set of discrete values

along its domain. If we use n point to represent c, then we can

represent c in a computer using the vector [c (0), c (1/n ), c (2/n ),

c (3/n ),… c (n21/n), c (1)]. To apply a re-parameterization c to a

curve b, we compute the new curve b (c (i/n)), for i = 1,2,..,n. Since

b values are available for only discrete t’s, we interpolate in

between the given values to obtain the new b, which is done using

bilinear interpolation.

Fig 1 shows three simple examples of elastic matching using four

small proteins (PDB IDs: 1MP6, 1G1J, 2K98 and 2EOW). In

Fig 1a, protein 1MP6, a protein with a single helix, is matched to

protein 1G1J, which also has a single helix but longer and bent in

the middle. We can see that the helix of 1MP6 is matched to two

relatively straight parts of the helix in 1G1J and the bent region is

skipped. Fig 1b shows the matching between 1MP6 with 2K98, a

protein with a helix-turn-helix structure. The helix in 1MP6 is

matched to both helices in 2K98. This kind of matching cannot be

achieved with rigid alignment methods. In Fig 1c, we match

protein 1MP6 to protein 2EOW (residue 12–37) with an alpha

helix and a beta sheet. We can see that a small portion of the chain

at the end of 1MP6 is stretched to match with the sheet in 2EOW.

Since the change of shape in this case is more than the matching in

Fig 1a and 1b, the distance between 1MP6 and 2EOW (0.943) is

larger than that of 1MP6 and 1G1J (0.668) and that of 1MP6 and

2K98 (0.895). Secondary structure information is not used in these

matchings. It is possible to match only alpha helices with alpha

helices and beta sheets with beta sheets when additional secondary

structure information is incorporated (see Discussion). It is worth

mentioning that the matching of two conformations of the same

protein (such as two NMR models of the same protein) produced

by elastic shape analysis does not necessarily have the correspond-

ing residues of the protein matched. This is so because matching of

the corresponding residues is not a constraint in calculating the

distance and thus may not be satisfied.

In Fig 2 we show the geodesic path from 1MP6 to 2K98. We

can see that 1MP6, the left-most structure, transforms its shape to

2K98, the right-most structure, by bending the middle portion of

the straight helical structure. Under the current elastic matching

approach, there may not be a physically meaningful explanation of

the geodesic path since we allow both bending and stretching of

the curves. But with some restrictions on how the curves can be

manipulated, geodesic paths may shed some light on the

conformational changes or dynamics of protein structures when

different conformations of the same protein are compared.

Proteins are flexible molecules and conformational dynamics is

important for protein functions [47,48]. It has been proposed that

protein structures should be characterized as ensembles of

Figure 2. Geodesic path between protein 1MP6, the left-most structure, and protein 2K98, the right-most structure.
doi:10.1371/journal.pcbi.1001075.g002

Figure 1. Examples of elastic geodesics. a) Elastic matching between protein 1MP6 and 1G1J. b) Elastic matching between protein 1MP6 and
2K98. c) Matching between protein 1MP6 and 2EOW.
doi:10.1371/journal.pcbi.1001075.g001
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structures instead of single structures as seen in X-ray crystallog-

raphy [49,50]. In NMR structure determination, multiple models

are often used to describe protein structures in solution. One

natural, and statistically appropriate, representation of an

ensemble of structures would be a probability distribution, where

the mean of the distribution is the mean structure of the ensemble

and covariances characterize the structure variations at different

parts of the structure. This representation allows one to compute

statistics of shapes as if they are random variables. Different

probability distributions, representing different protein families,

can be compared using standard testing. Hypothesis testing on

whether a protein structure belongs to a known family of proteins

can be performed using likelihood-ratio tests. Structure variations

within a protein family can also be studied under this

mathematical framework. For example, given a few sample shapes

from a population, this method can produce their average shape in

a principled manner. Let b1, b2, …, bn be a given set of structures,

represented by their SRVFs q1, q2, …, qn. Define their mean shape

as the quantity:

m~ arg min
½q�[S

Xn

i~1

d(½q�,½qi�)2, ð6Þ

where d([q],[qi]) is the distance between q and qi. The actual

minimizer is found using an iterated gradient-approach that is not

repeated here due to the lack of space but has been presented in

many papers earlier (see e.g. [42]). Consider the 20 NMR

structures of protein 2JVD obtained from the PDB (shown in

Fig 3a). We have calculated the mean structure of these 20 NMR

structures, and the result is shown in Fig 3b. Mean shapes of

protein structure families/classes can be very useful in automatic

classifications of new protein structures. For example, they can

serve as filters to quickly narrow down the list of more likely

Figure 3. Mean structure and sampled structures. a) 2JVD NMR structures. b) The mean structure of multiple 2JVD NMR structures. c) Samples
from the probability distribution. d) Samples on the largest variation direction.
doi:10.1371/journal.pcbi.1001075.g003
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protein families, which can then be studied in more details. In

addition to the first central moment, i.e. sample means, we can

also calculate covariances for a group of structures and even build

a Gaussian-type probability distribution for this group by

considering the available structures as a sample from the

underlying distribution.

Covariance and its use in structure classification. One

unique feature of the framework is its ability to calculate

covariances for populations of protein structures. Covariances

can reveal the population-specific variation among a group of

protein structures and be used in classification of protein

structures. From the covariances we can identify the directions

with the largest variation within a group of protein structures. To

define sample covariance we first approximate the shape space S

in a neighborhood of m by a flat space Tm(S). Then, each of the

observed structures, or rather its SRVF, is transferred to the flat

space Tm(S) using the mapping:

qi . vi:
h

sin(h)
(qi{cos(h)m)

These vis are simply the directions of the geodesics from the mean

m to qis. We can compute the standard sample covariance matrix K

of vis and take its singular value decomposition K = USUt. Here S
is a diagonal matrix of singular values (s1, s2, s3…) and U

contains the corresponding singular vectors. If the singular values

are arranged in a decreasing order, the first few, say k, columns of

U represent the directions of major variation, or the principal

components, in the underlying population. If we let z1, z2, … zk be

independent standard normal random variables, we can define a

multivariate normal density on the direction v according to:

v~
Xk

i~1

zi

ffiffiffiffi
si

p
Ui

Then, this random direction can be converted into the SRVF of a

random shape using the mapping

v . q:cos( vk k)mz
sin( vk k)

vk k v

Figure 4. Flexibilities at each residue of 2JVD. X-axis is the indices of residues and y-axis is the variations of the residues.
doi:10.1371/journal.pcbi.1001075.g004
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which can be further converted into a shape using integration:

b(t)~

ðt

0

q(s) q(s)k kds

This defines a formal probability model on the shape space S and

one can sample random structures from it using the steps outlined

above. Fig 3c shows 10 randomly sampled structures from such

distribution with parameters estimated from the given structures.

If we set V~t
ffiffiffiffi
si
p

Ui for some i, we can study the resulting

shape changes in the direction of Ui. By computing the shapes for

a range of t from 22 to 2, we can see the shape variability in the

structures for that direction. For example, in Fig 3d, we sample 10

structures along the largest variation direction U1. To display the

rigid superposition of the structures we translate them so that their

centres of mass coincide with that of the mean structure. The

rotations were obtained through optimally matching the SRVFs of

these structures to the mean structure. The variation can be

decomposed to residue level and the flexibility (structure variation)

of each residue can be analyzed. To obtain the variance for each

residue, we sampled randomly 10 structures and align them with

the mean shape. The distances of each residue of sampled

structures with that of mean shape can then be calculated and used

to compute variance of that particular residue. In Fig 4, we plot

the variance of each residue for 2JVD. We can see clearly that

those residues at the C terminal have much larger variation, which

is consistent with observation from the multiple NMR structures.

To illustrate how we can use the covariance for structure

classification, we sampled two random structures from the

distribution built using multiple NMR structures of protein

2JVD with the same geodesic distance to the mean structure,

but along two different directions. The probabilities of the two

structures under the calculated distribution are 0.0429 and 0.0048,

respectively. Although they have the same distance to the mean

structure, their probabilities are quite different. This is so because

structure 1 lies in the direction with largest variability in the

population and structure 2 lies in the direction with much smaller

variability, as shown in Fig 5a. Fig 5b shows the superposition of

the mean structure, structure 1 and structure 2. This can be a

common scenario in structure classification in practice where by

chance two proteins may be more similar in the parts that are not

conserved within their own families, but less similar in the

Figure 5. Covariance in structure classification. a) Illustration of two directions with different variations. b) Two structures sampled on the two
directions of different variability but with similar distance to the mean shape.
doi:10.1371/journal.pcbi.1001075.g005

Table 1. Performance comparison of elastic shape analysis (ESA) with Combinatorial Extension (CE) and Matt.

ESA CE Matt

TP/TN/FP/FN RI TP/TN/FP/FN RI TP/TN/FP/FN RI

A 229/9 2417/16880/6308/501 0.7392 2778/18721/4467/140 0.8235 2728/5643/17545/190 0.3207

B 516/13 10786/84675/35621/1788 0.7185 12193/91395/28901/381 0.7796 12137/97311/22985/437 0.8237

C 516/17 6624/98811/24907/2528 0.7935 8075/82681/41037/1077 0.6830 8827/106865/16853/325 0.8707

D 292/8 5728/34756/1324/678 0.9529 6361/30684/5396/45 0.8719 6406/36080/0/0 1

Total 1579/48 24409/1117980/96476/6966 0.9170 29431/1125707/88749/1944 0.9272 30042/1069181/145275/1333 0.8823

TP: true positive, TN: true negative, FP: false positive, FN: false negative. RI: random index scores.
doi:10.1371/journal.pcbi.1001075.t001
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conserved parts. That will give a relatively small distance for the

two proteins although they are not in the same family.

Classification of such proteins can be improved using covariance

structures of their corresponding families. In the sequence

alignment, profiles can be built for families of sequences to

achieve better sensitivity and accuracy [51]. However, profiles for

protein structures are much harder to build. The current

framework can readily account for the family-specific variations

and use them in structure classifications.

Results

In this section, we present the performance of our method on a

large scale protein structure classification using structures from

SCOP database and compare our results with CE [12] and Matt

[25]. We selected a subset of non-homologous proteins from

SCOP database with pair-wise sequence identity smaller than 40%

from the four largest classes (with at least 5 members) at top level

of SCOP hierarchy (all alpha, all beta, alpha/beta and

alpha+beta). Classes at the bottom level (family level) with less

than 20 members are ignored. This gave us a set of 1579 proteins

in total. We calculated the pair-wise geodesic distances among

these protein structures and clustered them into different classes.

Hierarchical clustering is done using the cluster function in Matlab

and average linkage is used to calculate distances among clusters.

When number of clusters, n, is provided, the hierarchical clustering

results can be easily divided into n classes. For CE and Matt, we

used (12score/score_max) as the distance, where score is either z-

score provided by CE or a matching score provided by Matt, and

score_max is the maximum z-score (for CE) or maximum

matching score (for Matt) among all pairwise scores. Using the

scores directly gave worse performances. We then used random

index (RI) as a criterion to evaluate the accuracy of our

classification. RI measures the percentage of correct decisions by

looking at all pair-wise decisions, which is the ratio ((TP+TN)/

(TP+TN+FP+FN)), where TP is true positive for a pair of proteins,

which are in the same class in SCOP and classified into the same

class, and TN (True Negative), FP (False Positive), FN (False

Negative) are defined similarly. In Table 1, we compare the

performance of our method with CE and Matt. To show how the

methods perform for different types of proteins classified at the top

level, we also show the results for these classes. We can see from

Table 1 that our method, without using any secondary structure

information, is comparable with CE and Matt overall. It is

interesting that these methods have quite different performances

for some protein classes.

An example that illustrates the strength of our method is protein

pair 1ycc and 1gu2, which have a small geodesic distance (0.84)

and are correctly classified into the same family by our method.

For these two proteins, CE gives a small z-score (2.6) and classifies

them into different classes. DaliLite and Mammoth give z-scores of

3.2 and 1.6, respectively (small scores imply large distances). Matt,

a method for flexible protein alignment, gives a p-value of 0.03

showing the two proteins have statistically significant similarities.

The rigid alignment of the two proteins by Mammoth is shown in

the left panel of Fig 6 and matching of the two proteins by ESA is

shown in the right of Fig 6. One can see that a rigid alignment

aligns the two proteins rather poorly. On the other hand, flexible

alignment methods like Matt and ours can match them quite well.

Finally we compared the running time of our method with

several other methods. Table 2 shows the comparison of running

time of CE, Matt, MUSTANG and ESA on three pairs of proteins

with around 100, 200 and 300 residues, respectively. All the

programs were run using the same computer.

Discussion

In summary, we have developed a mathematical framework for

protein structure comparison based on elastic shape analysis, a

method originally developed in the field of computer vision and

image analysis. Under this framework, protein structures are

compared as three dimensional elastic curves and can be treated as

random variables for statistical analysis. Mean and covariance of a

group of protein structures can be computed. Probability

Figure 6. Example of structure alignment by ESA. a) Rigid superposition of 1ycc and 1gu2. b) Matching of points along 1gu2 and 1ycc by
elastic shape analysis. The red regions label helices, green regions label strands, and blue regions label coils.
doi:10.1371/journal.pcbi.1001075.g006
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distributions can be built for a population of protein structures and

hypothesis testing can be conducted for a protein structure against

a known protein family/class. Although protein structures have

been studies for many years and many computational methods

have been developed for protein structure comparison, as far as we

know, this is the first rigorous mathematical framework that can

address the above computations.

It is worth mentioning that although we consider protein

structures as three dimensional curves in this study and ignore the

sequence and local structure features (such as secondary

structures), the framework can readily incorporate amino acid

sequence or secondary structure information. Such additional

information can be very helpful to achieve better alignment. For

example, secondary structure information has been used by many

structure alignment methods since secondary structure type is the

major feature used in manual structure classification. To

incorporate such auxiliary information we can construct contin-

uous auxiliary functions along the curves, derived from the

additional information. The matching and deformations can then

be performed using the higher dimensional composite curves that

are formed by concatenating the geometric and the auxiliary

coordinates. The distances obtained are still proper distances on

the higher dimensional space. In this matching, one needs to

adjust the relative magnitude (weight) of the geometric and

auxiliary coordinates, which can be problem dependent. With

secondary structure type as auxiliary function, we can force

protein fragments with the same secondary structure type to match

with each other by giving a larger weight on the auxiliary

secondary structure information, which may further improve the

accuracy of structure classification. When using sequence as

auxiliary information, one can perform alignment on both

structure and sequence space by using an amino acid substitution

matrix (for instance, BLOSUM62 matrix) as the distance measure

for amino acid residues along the chains. One can also force all

corresponding residues to match with each other when comparing

two protein structures with the same sequence. The geodesic path

(deformation from one structure to another) generated using such

constraint may then have a more natural physical interpretation.

In this study we focused mainly on pairwise protein structure

comparison and studying the basic properties of a population of

structures such as means and covariances. The framework can also

be applied to study multiple structure comparison (multiple

structure alignment) and provide an alignment of multiple

structures if it is desirable. To do so, we can calculate the mean

structure of the multiple structures and align each structure to the

mean structure. The mathematical framework also provides

principled ways to deal with more complex situations. For

example, in the troublesome case that there is one or more

structures that are very different from the rest of the structures to

be aligned, outliers can be detected based on the mean and

covariance structure of the population.

In constructing a probability distribution from a group of

structures, we chose the tangent space of our shape space and

assumed Gaussian distribution on this space. The shape spaces

(ours and most other formally defined shape spaces) are highly

nonlinear manifolds and it is difficult to build distributions on

them directly. On the other hand, it is a very common practice to

impose probability distributions on the tangent space since they

are linear (vector) spaces. The mapping between a tangent space

and the manifold can be made a bijection by putting some

appropriate constraints on the tangent space. As for the choice of

Gaussian distribution, we have not validated it on the tangent

spaces of our shape space. Our goal in this study is to demonstrate

the computation of the second moment for observed shapes and to

suggest the simplest probability model that captures the first two

moments, i.e. a multivariate normal. One can easily extend this

framework to include mixtures of Gaussian models [52] or even

generalized Gaussian models and we expect them to better match

the observed variability of the protein structures. These extensions

can be explored in future studies.

Since we represent protein structures as curves, our method

mainly deals with the type of structure comparison where

sequence order of amino acid residues is relevant to the distances

of structures (sequential structure alignment). In general, our

method is not good at detecting related proteins whose differences

are caused by changes such as domain swapping, or domain

insertion/deletion. However, the method can be readily modified

to compare circular permuted proteins [33] by linking the C-

terminal and N-terminal ends of a protein (for example, using a

straight line) and cutting the protein in the middle, preferably at

residues linking domains or secondary structure fragments. To

deal with domain insertion/deletion/swapping, we can use the

algorithm in [33], where this problem is formulated as a mixed-

integer programming problem, to select near optimal combination

of fragments before calculating geodesic distances. If domain

swapping or deletion/insertion can be detected or predicted (i.e.

using sequence based methods), cuts and reconnections can also be

done at corresponding positions to allow for even more flexible

structure comparisons.
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