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Changes in gene expression may represent an important mode of human adaptation. However, to date, there are relatively
few known examples in which selection has been shown to act directly on levels or patterns of gene expression. In order
to test whether single nucleotide polymorphisms (SNPs) that affect gene expression in cis are frequently targets of
positive natural selection in humans, we analyzed genome-wide SNP and expression data from cell lines associated with
the International HapMap Project. Using a haplotype-based test for selection that was designed to detect incomplete
selective sweeps, we found that SNPs showing signals of selection are more likely than random SNPs to be associated
with gene expression levels in cis. This signal is significant in the Yoruba (which is the population that shows the
strongest signals of selection overall) and shows a trend in the same direction in the other HapMap populations. Our
results argue that selection on gene expression levels is an important type of human adaptation. Finally, our work
provides an analytical framework for tackling a more general problem that will become increasingly important: namely,
testing whether selection signals overlap significantly with SNPs that are associated with phenotypes of interest.

Introduction

Mutations in cis-regulatory regions can produce pre-
cise changes in gene function by changing the expression,
timing, or location of gene expression. Therefore, it seems
likely that changes in cis-regulation might be an important
mode of adaptive evolution, and indeed, there are now sev-
eral known examples of this kind of adaptation (Wray
[2007]; but see also Hoekstra and Coyne [2007]). Examples
in humans include mutations upstream of the lactase gene
that cause lactase production in the intestine to persist into
adulthood (Bersaglieri et al. 2004; Enattah et al. 2004;
Tishkoff et al. 2007) and the Duffy-null mutation that stops
expression of the DARC receptor in erythrocytes as a de-
fense against Plasmodium vivax (Hamblin and Di Rienzo
2000). Other examples include selection on cis regulation
of human prodynorphin (Rockman et al. 2005) and selec-
tion on regulatory variation at the human factor VII locus
(Hahn et al. 2004). However, genome-scale studies of the
evolution of expression in humans have been hindered by
our limited knowledge of which sequences are actually reg-
ulatory. Recent studies have reported instances of rapid
evolution of either conserved noncoding sequences or pro-
moter regions, but in most cases, it is difficult to connect
sequence changes to biological function (Pollard et al.
2006; Prabhakar et al. 2006; Haygood et al. 2007; Kim
and Pritchard 2007).

As an alternative way forward, we used recent advan-
ces in expression quantitative trait locus (eQTL) mapping
that allow identification of large numbers of single nucle-
otide polymorphisms (SNPs) that are strongly associated
with gene expression levels, using data from the HapMap
lymphoblast cell lines (Morley et al. 2004; Dixon et al.
2007; Stranger, Forrest, et al. 2007; Stranger, Nica, et al.
2007; Gilad et al. 2008; Veyrieras et al. 2008). We set

out to test whether such eQTL signals are frequent targets
of positive selection. Our essential logic was that if eQTLs
are rarely targets of positive selection, then eQTLs should
be independent of selection signals. In contrast, if expres-
sion changes that can be detected in lymphoblast cell lines
are frequently adaptive, then there should be an enrichment
for eQTLs among SNPs that show evidence of positive
selection.

More broadly, this type of approach can potentially
enable us to link selection signals to particular genes and
molecular phenotypes. One of the important next steps
in genome-wide studies of selection is to understand
how selected alleles affect molecular or organism-level
phenotypes. By overlaying large-scale data sets of QTLs
for gene expression or other phenotypes (including disease
studies), it may be possible to link more signals of selection
with function. In this paper, we lay out an analytical frame-
work for testing for an enrichment of signals of selection
among a particular class of SNPs (e.g., eQTLs or dis-
ease-associated SNPs), while controlling for important
confounders.

Detecting Recent Selection

To identify signals of recent or ongoing natural selec-
tion on variants that are currently polymorphic within pop-
ulations (and hence can be eQTLs), we calculated the
‘‘integrated haplotype score’’ (iHS) statistic (Voight et al.
2006) for SNPs in the HapMap Phase II data. The iHS
is one of a number of measures introduced to detect signa-
tures of very recent selection on variants that have not yet
reached fixation (Hudson et al. 1994; Sabeti et al. 2002,
2007; Wang et al. 2006; Tang et al. 2007).

The iHS statistic aims to identify SNPs for which one
allele has changed frequency very rapidly, a hallmark of
strong selection. It does this by comparing the extent of
haplotype homozygosity on haplotypes carrying the ances-
tral and derived alleles, respectively, at a SNP. The pres-
ence of an unusual difference in homozygosity between
the two alleles can be an indicator of selection (Hudson
et al. 1994; Sabeti et al. 2002). Several lines of evidence
indicate that iHS is effective at identifying instances of
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strong, recent selection in which the selected allele has not
yet reached fixation (Voight et al. 2006). Our previous anal-
ysis found that the iHS signals are most reliable in the Yor-
uba population, from Ibadan, Nigeria (YRI; Voight et al.
2006). This is to be expected because bottlenecks—as ex-
perienced by the non-African populations—reduce the
power of this type of approach (Teshima et al. 2006; Sabeti
et al. 2007).

The iHS statistic is constructed to have an approxi-
mately standard normal distribution for all allele frequen-
cies. A value of iHS � 0 at an SNP indicates that the
derived allele is on an unusually long haplotype; iHS �
0 indicates that the ancestral allele is on an unusually long
haplotype. Therefore, for a standard sweep model in which
the derived allele increases in frequency rapidly, we expect
the selected site to have a negative iHS value. In simula-
tions, we find that selected sites are often surrounded by
numerous SNPs with either strongly positive or negative
iHS values and that the selected site generally does not have
the most negative iHS value (Voight et al. [2006] and
Kudaravalli S, unpublished data). Therefore, most of our
analysis below focuses on SNPs that have an extreme
iHS value, either positive or negative and that lie within
a cluster of other SNPs that also have jiHSj . 2. We con-
sider that such SNPs are likely to lie on the same haplotype
as the selected site.

Note that our approach does not provide formal P val-
ues for candidate selection signals because it is difficult to
simulate a fully accurate null model (Voight et al. 2006).
Instead, we focus on SNPs that lie in the tail of the overall
genome-wide distribution of iHS, with the view that these
are likely to be enriched for true selection signals (Teshima
et al. 2006). We will evaluate whether such SNPs are more
likely than random SNPs to be eQTLs.

Methods
HapMap Genotype Data

All analyses were based on the HapMap Project Phase
II/rel#21 datafiles (http://www.hapmap.org) (International
HapMap Consortium 2007). For the CEPH European
(CEU) and YRI samples, we analyzed the data from the
60 unrelated parents. Due to their close genetic similarity
and in order to have a single larger sample, we pooled
the Han Chinese from Beijing and Japanese from Tokyo
samples to form a single analysis panel of 90 unrelated
Asian individuals, denoted here as the ‘‘ASN’’ sample.
Haplotype phase estimation for all the data was performed
by the HapMap consortium using Phase 2.0 (Stephens and
Scheet 2005; International HapMap Consortium 2007). The
phasing procedure imputed all missing genotypes at SNPs
with , 20% missing data. Our analyses were restricted to
the autosomes. In total, we analyzed 2,419,983, 2,557,252,
and 2,856,346 SNPs for the ASN, CEU, and YRI popula-
tions, respectively.

SNP and Gene Annotation Information

Gene annotation information was obtained from the
RefSeq database (Pruitt et al. 2007). This information
was primarily used for obtaining the gene start and gene

end coordinates. Where required, genome coordinates were
converted from NCBI build 36 (hg18) to build 35 (hg17)
using the Batch Coordinate Conversion tool available at
the University of California-Santa Cruz (UCSC) Web
browser (Karolchik et al. 2008).

Estimating Ancestral States of SNPs

Ancestral states for all SNPs were estimated using
whole-genome human–chimpanzee alignments from the
UCSC database (Karolchik et al. 2008). Based on the phys-
ical position of the SNP in the human genome (Build hg17),
the allele at the corresponding position in the chimp ge-
nome (Build pantro2) was obtained. If the human SNP po-
sition aligned to missing data in the chimpanzee genome or
if the chimpanzee allele did not match either human allele,
then the corresponding SNP was excluded from further
analysis.

Calculation of jiHSj
jiHSj values were calculated separately in each popu-

lation using methods described previously (Voight et al.
2006). We estimated recombination rates separately for
each HapMap population as described previously (Voight
et al. 2006). We did not compute jiHSj for SNPs without an
estimated ancestral state, or whose population minor allele
frequency is,5%, or for some SNPs that are close to chro-
mosome ends or large regions without SNPs (Voight et al.
2006). The total numbers of autosomal SNPs with valid
jiHSj scores were 2,143,201 for CEU, 2,383,208 for
YRI, and 1,966,892 for ASN. The locations of iHS peaks
agreed very closely with the earlier Phase I results (supple-
mentary information, Supplementary Material online).

Criteria for Identifying SNPs as Lying in Selection
Signals

For all analyses in the main text, we require that SNPs
have jiHSj . 2 to be considered as possessing candidate
selection signals. Additionally, for the logistic regression
and hierarchical model analyses (and the data in red in
fig. 2), we required that candidate selected SNPs also lie
within ‘‘clusters’’ of other high iHS SNPs. Specifically,
for each SNP, we considered a window of 151 consecutive
SNPs centered on the SNP of interest (75 SNPs on either
side). We counted the proportion of SNPs within this win-
dow for which jiHSj . 2 and considered the window to be
of interest if this proportion lies within the top 5% of all
windows genome-wide for that population. (For other
thresholds in the Supplementary Material online, see re-
sults.) About 1.5% of all the SNPs meet these criteria.
For SNPs that lie close to chromosome ends, the proportion
of SNPs with jiHSj . 2 was calculated based on the max-
imum possible window size, from a minimum of 75 SNPs
up to 151 SNPs.

Gene Expression Data

We used gene expression levels that were measured
previously in lymphoblastoid cell lines from all 210
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unrelated HapMap individuals, using Illumina’s human
whole-genome expression array (WG-6 version 1) (Stranger,
Forrest, et al. 2007). We downloaded the data that were
normalized first by quantile normalization within replica-
tes and then median normalized across all HapMap indi-
viduals (Stranger, Forrest, et al. 2007). The expression
data for each probe were further modified by quantile
normalization within each population to bring the data to
a standard normal distribution for each probe in each
population.

Mapping Illumina Probe Sequences onto the Human
Genome

To determine the genes associated with the probe se-
quences on the Illumina chip, each probe sequence was
aligned against whole-genome RNA sequences using
BLAT (Kent 2002). RNA sequences were downloaded
from RefSeq (Pruitt et al. 2007). We aligned to RNA se-
quences instead of the human reference sequence to account
for situations where a probe crosses exon boundaries. Each
probe was 50 bp long. Probes that aligned to multiple genes
with .80% sequence matching were dropped from our
analysis. In total, this procedure led to a total of 19,536
probes in 16,155 unique autosomal genes for analysis.

Testing for Association between SNPs and Gene
Expression Levels

For each gene with expression data, we tested all SNPs
that are either inside the gene or within 100 kb of the gene’s
transcription start or end site and with minor allele fre-
quency .5% in the relevant population, for association
with the measured expression level (separately at each
probe). The analysis was performed separately in each
population.

We also performed the analysis using larger windows
around the target gene, such as including all SNPs within
500 kb of the gene (for other cutoffs, see the supplementary
information, SupplementaryMaterial online). However, the
false discovery rate (FDR) for eQTLs detected outside 100
kb is very high and so we focus on this smaller window size.
Given that these eQTLs are tightly clustered around the cor-
responding genes, we will refer to these as cis-eQTLs,
though we do not have direct evidence of a true cis-acting
mechanism.

We tested for association between each SNP and gene
expression level using a standard linear regression model
with the genotypes being the predictor variable and with
the quantile normalized gene expression level being the de-
pendent variable. The genotypes were coded as 0, 1, and 2
(corresponding to the number of copies of the minor allele),
which means that we assume that the average quantile nor-
malized expression levels of heterozygotes are halfway be-
tween the expression levels of each homozygote. As
described above, we used the phased HapMap data with
all missing genotypes imputed.

Any SNP that was significantly associated with the ex-
pression profile at P , 10�4 was considered an eQTL in

that population. The gene-level FDR associated with this
significance threshold is low (FDR , 18%) in all three
population groups (see supplementary information, Supple-
mentary Material online). Simulations indicate that our
P values have the correct distribution under the null hypoth-
esis for minor allele frequencies�10% and are slightly con-
servative at lower allele frequencies (supplementary
information, Supplementary Material online). When multi-
ple probes mapped to a single gene (,10% of genes), we
tested for association separately with each probe. For our
analysis, we then used only the probe that had the largest
number of associated SNPs (at P , 10�4). We also per-
formed separate analyses based on selecting the probe with
the single most ‘‘significant’’ association, and the overall
results were very similar (data not shown).

Odds Ratio

We used the logistic regression and hierarchical mod-
els to estimate an odds ratio that measures the relative en-
richment of eQTLs among SNPs with selection signals,
compared with those without. The odds ratio is defined as

OR5

�
Pr½eQTLjiHS�

Pr½not eQTLjiHS�

��
Pr½not eQTLjnot iHS�
Pr½eQTLjnot iHS�

�
; ð1Þ

where in a slight abuse of notation, ‘‘eQTL,’’ and ‘‘not
eQTL,’’ are used as short hand to indicate that an SNP
is, or is not, significantly associated with expression of
a prespecified gene (at P , 10�4) and where ‘‘iHS,’’ and
‘‘not iHS,’’ indicate that an SNP does, or does not, have
a significant selection signal as defined above.

Logistic Regression Model

To test whether there is an enrichment of eQTLs
among iHS signals, we implemented a logistic regression
model, as follows. The model is used to predict, indepen-
dently for each gene, population, and for every SNP within
100 kb of that gene, whether or not that SNP is an eQTL, as
a function of the selection information and other potential
explanatory variables:

Logit½IðeQTL5 1Þ�5 b1IðiHSsig5 1Þ þ b2ðLDÞ
þ b3ðdistTSSÞ þ b4ðdistTESÞ þ b5MAF þ e: ð2Þ

Here, I(eQTL 5 1) is an indicator function that is 1 if an
SNP is significantly associated with expression for the gene
in question (at P , 10�4) and is otherwise 0; I(iHSsig5 1)
is an indicator function that is 1 if the SNP shows signals of
selection (as defined above) and is otherwise 0; LD is a mea-
sure of the extent of LD around the SNP in question;
distTSS and distTES are the distances to the gene’s tran-
scription start and end sites, respectively, measured in base
pairs; MAF is the minor allele frequency of the SNP in the
relevant population; and Logit[x] is the function log[Pr(x)/
Pr(1 � x)]. The b variables are the coefficients of the logis-
tic regression. If b1 . 0, this implies an enrichment effect
for eQTLs among SNPs with selection signals. Note that
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exp(b1) estimates the odds ratio for the effect of selection
(defined above), while controlling for the other explanatory
variables.

The explanatory variables LD, distTSS, distTES, and
MAF were included because we observed that the locations
of eQTLs are significantly associated with each of these var-
iables. Among these, LD is the most plausible confounder
with selection because the other measures show only minor
correlationwith the probability that an SNP shows signals of
selection. For this reason, we investigated various measures
of the extent of LD. Broadly speaking, we used two types of
approaches to measure LD. One type of measure, used for
the main paper, assesses howmany other SNPs are in strong
LD with the target SNP. (To be precise, we counted how
manyHapMapSNPs have r2 . 0.8with the target SNP, cal-
culated in a 500-kb window around the target SNP.) The ra-
tionale is that an SNP in strong LD with a large number of
other SNPs has an increased probability of being associated
with gene expression because it has a greater probability of
being inLDwith a functional variant (see fig. 2D, black line).
Weused theLDmeasure r2 because r2 quantifies the strength
of association signal captured by a tag SNP (Pritchard and
Przeworski 2001). Our results are robust to the choice of r2

cutoff (supplementary information, SupplementaryMaterial
online). We also considered two measures that describe the
overall extent of LD in a region (the total number of eQTL
SNPs—whichgives some sense of the breadth of association
signals—and the population recombination rate q per unit
physical distance). Results for the latter measures are given
in the Supplementary Material online and generally yield
larger odds ratio estimates.

For each population, we restricted our logistic regres-
sion analysis to the set of genes that have at least one sig-
nificant eQTL SNP (i.e., P , 10�4) in that population. This
was done for two reasons. First, this would be more robust
to any systematic differences in iHS between genes with
and without eQTLs, as might happen if there are differences
in average SNP density or recombination rate between the
two sets. Second, it is likely that many of the genes for
which we did not find eQTLs are simply not expressed
in lymphoblast cell lines and hence including these genes
simply adds noise to the overall data. Hence, the estimated
odds ratio can be interpreted as the relative enrichment
within genes with an eQTL.

Logistic Regression Confidence Intervals

To estimate confidence intervals (CIs) for the logistic re-
gression model, we used a bootstrap approach to account for
the fact that clumps of nearby SNPsmay all be eQTLs for the
same gene. In effect, our bootstrap analysis resamples across
the setofgeneswith adetectedeQTLineachpopulation (638,
1,060, and1,289genes inCEU,YRI, andASN, respectively).
In YRI, for example, random sets of genes were drawn with
replacement from the full set of 1,060 genes. We reran the
logistic regression analysis using the new set of 1,060 genes
(includingmultiples of some genes) and output the estimated
odds ratio. This was done for 5,000 independent replicates in
order to approximate the sampling variation of the observed
odds ratio.Weused thecentral95%of theodds ratioestimates
as estimates of the 95% CIs for each population.

Hierarchical Model

In a separate project, we have developed a hierarchical
model for fine mapping the functional SNPs that underlie
eQTLs and for identifying covariates that are predictive
of the locations and identities of these SNPs (Veyrieras
et al. 2008). In brief, the method starts from the Bayesian
regression framework developed by Servin and Stephens
(2007). For each SNP in the cis-candidate region around
a gene, we compute a Bayes factor that is the ratio of the
probability of the expression data assuming that the geno-
type at this SNP affects expression levels to the probability
of the expression data assuming that the genotype does not
affect expression levels. (The expression data are generated
either as a mixture of three normal distributions correspond-
ing to the three genotypes or, under the null hypothesis, as
a single normal distribution. We assume that dominance ef-
fects are usually small so that the heterozygote mean is ap-
proximately the average of the two homozygotes’ means
Servin and Stephens [2007].) Then, if we assume that there
is exactly one eQTL for a gene, the Bayes factors allow us to
compute the posterior probability that each SNP is the causal
SNP. (When the causal SNP is not in HapMap, simulations
show that its signal is usually absorbed by a nearby SNP in
strong LD.)We then use these Bayes factors in a hierarchical
model that allows us to estimate the relative contributions of
different types of covariates to predicting whether an SNP
will be an eQTL. Specifically, conditional on there being an
eQTL for a particular gene, we consider that the jth SNP has
a prior probability pj that it is the functional site, where

pj 5
exp

�
xj
�

PM
j# 5 1 expðxj#Þ

; ð3Þ

where M is the number of SNPs in the cis-candidate region
and where

xj 5
XL
l5 1

kldjl: ð4Þ

HereK5ðk1; . . . ; kLÞ is a vector of annotation effect param-
eters and djl is an indicator function that is 1 if SNP j has the
lth annotation and is 0 otherwise. In this framework, exp(kl)
is the odds ratio of the effect of the lth annotation. For this
analysis, each SNP was assigned to a single location bin that
indicates the position of the SNP relative to the gene in ques-
tion (setting djl 5 1 for one location bin and to 0 for all other
locations). Additionally, there was a k for the effect of an
SNP having a signal of selection or not. The analysis
was performed separately in each population group. For
the hierarchical model analysis, we used a subset of the full
gene set of 16,155 genes used in the logistic regression anal-
ysis. For the hierarchical model analysis, we considered
11,446 genes with a single known transcript (Veyrieras et al.
2008).

Results

We analyzed expression data for 16,155 autosomal
genes generated by the Illumina Sentrix Human-6
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Expression BeadChip for all HapMap individuals (Stranger,
Forrest, et al. 2007). For each gene with expression data, we
used linear regression to test all HapMap SNPs within 100
kb of the gene for association with expression levels (Meth-
ods). We defined the region of interest in this way because
most of the strong eQTLs in the data set lie within these
boundaries (Stranger, Nica, et al. 2007) and the gene-level
FDR for eQTLs beyond 100 kb is extremely
high (supplementary information, Supplementary Material
online).

We identified SNPs that are significant at P , 10�4

for association with expression levels of 638, 1,060, and
1,289 genes for the CEPH (CEU), Yoruba (YRI), and east
Asian (ASN) samples, respectively. This significance
threshold yields a gene-level FDR �18% in all three pop-
ulations (supplementary information, Supplementary Mate-
rial online). The lower number of genes with eQTLs in
CEU may reflect some anomalous patterns of gene expres-
sion evident in the older CEU cell lines (supplementary in-
formation, Supplementary Material online; Stranger, Nica,
et al. [2007]). The numbers of genes that we consider sig-
nificant here is larger than in the previous analysis of these
data by Stranger, Nica, et al. (2007) because we use a less
stringent significance threshold in order to increase the
number of observed signals. Nonetheless, the FDR implies
that the large majority (.80%) of the eQTLs identified are
true positives.

Overlap of iHS and eQTL Signals

Visual inspection of the data reveals examples in
which there is a strong overlap between the eQTL and se-
lection signals. Data for several of these genes are illus-
trated in figure 1 and in the supplementary information
(SupplementaryMaterial online). In these examples, almost
all the SNPs that are correlated with expression level also
have high jiHSj, suggesting that in each case the eQTL itself
may be the actual target of selection. However, these exam-
ples also illustrate that it is usually unclear which site is the
actual target of selection, and whether this coincides with
the functional site in the eQTL.

To look more quantitatively at the overlap of selection
and eQTL signals, we next examined genome wide whether
SNPs with high jiHSj are more likely to be eQTLs com-
pared with SNPs with low jiHSj. Figure 2A shows, for
the YRI population, that SNPs with jiHSj . 2 (roughly
5% of SNPs) are considerably more likely than random
SNPs to be associated with expression of nearby genes.
When these SNPs lie within clusters of high-jiHSj SNPs
(shown to be a more reliable indicator of selection; Voight
et al. 2006), the abundance of eQTLs is further enriched
(fig. 2A, red data). Overall, the signal of enrichment is stron-
gest in YRI, the population that has the clearest signals of
selection according to iHS (Voight et al. 2006), but enrich-
ment is also seen in the other HapMap groups (supplemen-
tary information, Supplementary Material online).

FIG. 1.—Two examples in which an eQTL is centered on a strong signal of selection. The upper half of each plot (green and red points) shows the
strength of association between SNPs and gene expression levels (plotted as �log10(P values) of the indicated gene). The lower half of each plot (blue
and red points) indicates �jiHSj scores for the same set of SNPs. Red points indicate SNPs that are both strongly associated with expression (P , 10�4)
and have jiHSj . 2. The positions of the genes of interest are indicated by the red bars at the center of each plot. (A) Data from SCL25A16 (YRI). (B) Data
from SPATA20 (ASN). According to the sliding-window analysis, the clusters of high jiHSj signals are in the 2.5% and 1% tails of the empirical Yoruba
(A) and Asian (B) distributions, respectively. The favored haplotypes are at 60% and 89% frequency, respectively.
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Another view of this effect is provided by figure 2B. As
expected, most SNPs that are significantly associated with
expression (at P , 10�4) lie close to the transcription start
site of the relevant gene (Stranger, Nica, et al. 2007). Among
SNPs with high jiHSj, the pattern is the same, but the abun-
dance of eQTLs is considerably higher. This also shows that
iHS does not appear to create a bias in the location of the
eQTLs. Similarly, figure 2C plots eQTL frequency as a func-
tion of derived allele frequency and shows a general excess
of eQTLs among SNPs with selection signals. Both these
factors are important because we find that SNPs with a high
jiHSj are enriched in genic regions and most eQTLs also
occur close to the relevant genes; the power to detect a partial
sweep using iHS is highest when the selected allele is in the
50–85% frequency range. This frequency range overlaps
with range of frequencies over which we have maximum
power to detect an eQTL (fig. 2C).

Although the results in figure 2 certainly seem to sug-
gest a genome-wide enrichment of selection signals on

SNPs that are associated with gene expression, these anal-
yses raise two important caveats. First, SNPs with high iHS
are often in strong LD with many other SNPs. Hence, they
may simply be better than random SNPs at tagging nearby
eQTLs (cf. Pe’er et al. [2006]). However, when we control
for local LD, the enrichment remains (fig. 2D). Second, the
results might plausibly be driven by chance overlap of iHS
and eQTL signals in a small number of regions.

To address these concerns more systematically, we im-
plemented a logistic regression model that estimates the
probability that an SNP is associated with expression of
a nearby gene as a function of 1) presence of a selection
signal, 2) the number of other SNPs tagged by that SNP,
3) the distance from the transcription start and end sites
of the gene whose expression data we are considering,
and 4) the minor allele frequency of the SNP (see Methods).
In the results reported below, we consider that an SNP
shows a signal of selection if and only if jiHSj . 2 and
it lies within a cluster of other high jiHSj SNPs (see

FIG. 2.—The abundance of eQTL signals in SNPs with and without evidence for selection (YRI data). In each plot, the red data correspond to
SNPs with strong evidence for selection (jiHSj . 2 and surrounded by an unusual cluster of other high jiHSj SNPs); blue data are for SNPs with
jiHSj . 2; and black data are for all SNPs. (A) Quantile–quantile plots of the distributions of �log10(P values) obtained from testing the expression
levels at each gene for association with nearby SNPs. The dashed line indicates the expected distribution of P values if there were no true associations
between SNPs and gene expression levels. Notice that SNPs with high jiHSj (red and blue data) show a higher rate of significant P values compared
with SNPs without a signal of selection. (B) SNPs with high jiHSj show an enrichment for eQTLs at various distances from the transcription start site.
(C) SNPs with high iHS tend to be enriched for eQTLs after controlling for allele frequency. The enrichment may be highest in the frequency ranges
where iHS has the greatest power (roughly 50–80%; Voight et al. 2006). (D) SNPs with high iHS show generally higher rates of eQTLs after
controlling for LD levels, as measured by the number of SNPs in high LD with the SNP in question (r2 . 0.8). For analogous plots of the other two
populations, see the Supplementary Material online.
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Methods). To account for the fact that clusters of SNPs
within a selection signal may all be eQTLs for the same
gene, we obtained CIs on the effect sizes by bootstrapping
over genes (Methods). The logistic regression model esti-
mates an odds ratio for the odds that an SNP with a signal of
selection is an eQTL, compared with the odds that an SNP
without a signal of selection is an eQTL, while controlling
for the confounders above (Methods). Values of the odds
ratio .1 imply an enrichment of eQTLs among SNPs with
signals of selection.

The results in table 1 show that indeed the enrichment
of eQTLs among SNPs with signals of selection is signif-
icant in the Yoruba, where the estimated odds ratio (ÔR) is
2.41 and where the 95% CI [1.23–4.27] does not overlap 1.
We find that the results suggest a similar effect in the CEPH
(ÔR52.29, CI 5 [0.83–4.35]) and east Asians (ÔR, CI 5
[0.82–2.38]); however in these populations, the confidence
regions overlap 1.

We hypothesize that the lack of a significant result in
the CEPH and east Asians is a reflection of the lower power
and higher false-positive rates of our selection scans in
the non-Africans. Compared with the Yoruba, both non-
African groups have undergone substantial bottlenecks
(Keinan et al. 2007). Bottlenecks are expected to reduce
the power of selection scans in general (Teshima et al.
2006) and for iHS in particular (Pickrell J, personal com-
munication). Moreover, by most measures, the iHS signals
detected by Voight et al. (2006) were more reliable in the
Yoruba than in the CEPH and east Asians. Consequently, it
may be that the nonsignificant correlation with gene expres-
sion in the non-Africans is due to a reduced fraction of true
positives within the tail of the iHS distributions in those
populations. In addition to this, perhaps due to the aberrant
expression patterns in the CEPH, we find fewer genes with
an eQTL signal. So even though the odds ratio for the CEU
and the YRI are in the same range (table 1), the CI for the
CEPH overlaps with 1 possibly because of the smaller
number of genes with SNPs that have an eQTL and an
iHS signal.

It should be noted that correcting for the strength of
local LD in the logistic regression model reduces the power
to detect an association between iHS and eQTL. This is be-

cause this variable is correlated with the iHS signal and
hence decreases the effect size of iHS in the model. If in-
stead of the number of SNPs in LD, the point estimate of the
local recombination rate (q) at an SNP, based on LD (In-
ternational HapMap Consortium 2007), is used as a surro-
gate for local LD, the estimated effect size (odds ratio) of
iHS on eQTL in the logistic regression model increases for
all three populations. In that analysis, the 95% CIs of the
odds ratios for YRI, CEU, and ASN do not overlap with
1 (supplementary information, Supplementary Material on-
line). We further verified that the effect size estimates are
fairly robust to various aspects of the analysis, including the
measure of local LD and the size of the region analyzed
around each gene (supplementary information, Supplemen-
tary Material online).

We also used a second, quite different analytical ap-
proach to assess the strength of the observed signals, apply-
ing a recently developed Bayesian hierarchical model for
detecting eQTLs (Veyrieras et al. 2008); see Methods for
further explanation. The hierarchical model assumes at
most one eQTL per gene and, by sharing information across
all genes, it assesses whether external information such as
SNP location or iHS signal affects the odds that a particular
SNP generates an observed eQTL. Because the model as-
sumes at most one eQTL per gene, the method is robust to
varying levels of LD (and hence variable numbers of associ-
ated SNPs); however, there may also be a small cost in power
if some genes in fact have multiple eQTLs. The Yoruba odds
ratio is again significantly .1 (estimated OR 5 5.4, CI 5
[2.2–13.9]). As before, the 95%CIs for CEPH and east Asians
both overlap 1.

Finally, large allele frequency differences between
populations (high FST) can also be an indicator of potential
selection. Consistent with our finding that regulation of
gene expression is a target of natural selection, we also find
that SNPs with large frequency differences between popu-
lations show a trend to be enriched for eQTLs compared
with SNPs with low-frequency differences (supplementary
information, Supplementary Material online).

Expression Differences That May Be Targets of
Selection

In the Yoruba, there are ; 30 genes in which SNPs
with selection signals are also eQTLs. Given that the odds
ratio of the enrichment is estimated to be ;2.5 by one
method and;3.5 by our other method (table 1), this would
suggest that the majority of these overlaps are in fact due to
selection on gene expression. (e.g., if the true odds ratio is
3:1, then we would anticipate only about 1/4 of the over-
lapping signals to be coincidental.) Hence, these results
suggest that perhaps 20 or more of the expression QTLs
detected in Yoruba are targets of natural selection. The odds
ratio point estimates suggest that a smaller number of the
CEPH and Asian signals may also represent meaningful
overlaps (� 0–25 depending on the analysis).

We find that the set of genes identified by the overlap
between iHS and eQTLs includes several that are worth
highlighting (a full list is contained in the Supplementary
Material online). For example,HLA-C has eQTL SNPs with

Table 1
Enrichment of eQTLs among SNPs with Signals of Selection,
as Estimated by Two Different Methods

Population Analysis Odds Ratio 95% CI Number of Genes

YRI LR 2.41 1.23–4.27 35
HM 5.43 2.17–13.87

CEU LR 2.29 0.83–4.35 16
HM 2.26 0.45–8.03

ASN LR 1.41 0.82–2.38 47
HM 1.52 0.58–3.43

NOTE.—For each population separately, we used logistic regression (LR) and

a hierarchical model (HM) to estimate the odds ratio that an SNP with a selection

signal (jiHSj . 2 and a cluster-based signal in the top 5%) is an eQTL, compared

with a comparable SNP without a selection signal. The 95% CIs were estimated as

described in the Methods. ‘‘Number of genes’’ indicates the number of genes for

which at least one SNP is both associated with gene expression and has a selection

signal.
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signals of selection in both the CEPH and east Asians. An
SNP upstream of this gene (rs9264942) has recently been
associatedwithHIV-1 viral load (Fellay et al. 2007); further-
more that study observed that the protective allele at this
SNP is associated with higher HLA-C gene expression in
the Stranger, Forrest, et al. (2007) data. Further inspection
of the data shows that rs9264942 lieswithin a clumpof SNPs
that are associated with gene expression, andmany of which
also have significant iHS.The SNP rs9264942 does not itself
have a significant iHS but it is not clear which SNP in the
region is actually functional, and there is at least one other
nearby SNP with a much stronger association with HLA-C
expression (that SNP, rs2249741 has iHS5 �1.9). The se-
lected haplotype is associated with lower expression of
HLA-C. Given that HIV is a relatively novel human patho-
gen, we speculate that this selection signal is a response to
a different pathogen. It is interesting to note that the set of
genes with eQTL and selection SNPs is enriched overall for
genes that interact with HIV proteins (12 in total, P 5 0.07
compared with eQTL genes overall). These include
MAN2C1, PAWR, and USF1 in YRI, TUBB2A, TUBB2B,
and MAN1A2 in CEU, and B3GALNT1, RNGTT, and
HLA-DRB5 in ASN.

We also identified several genes that are involved in
susceptibility to diseases. We find that alleles associated
with lower expression of PPARG show signals of positive
selection. A common nonsynonymous variant in PPARG
contributes to risk for type 2 diabetes (Altshuler et al.
2000). Genes involved in rare diseases with such signals
in YRI include USF1 (hyperlidemia), NF1 (neurofibroma-
tosis), and RNF135 (overgrowth and learning disabilities;
Maglott et al. 2007; OMIM 2008). The observation that
RNF135 is involved with overgrowth may be interesting
in light of a separate observation that an expression variant
in GDF5 with a signal of selection is also associated with
height (see below).

Discussion

The overlap of signals of selection and eQTLs around
a single gene does not automatically imply that expression
change is the target of selection at that locus. However, a ge-
nome-wide enrichment of this observation is strongly sug-
gestive of the fact that cis regulation of gene expression, as
a specific class of phenotype, is an important target of recent
positive selection in the human genome. In this paper, we
report that in the Yoruba HapMap, there is a significant cor-
relation between iHS-based signals of selection and gene
eQTLs detected in lymphoblastoid cell lines. This observa-
tion argues that levels of gene expression are an important
target of positive selection. We also see a trend toward
a similar effect in the two non-African populations, how-
ever in both cases, this is not statistically significant. As
discussed above, these nonsignificant results may reflect
a higher false-positive rate for scans of recent positive se-
lection in the non-African populations.

It should be pointed out that our approach likely under-
estimates the importance of positive selection acting on
gene expression levels. First, we have incomplete power
to detect both targets of selection and eQTLs. However,
fundamentally, there will surely be many additional eQTLs

that would be detected in other tissues but that cannot be
detected in lymphoblast cells. Two examples epitomize
how this could affect our results. The best documented case
of a partial sweep on a human cis-regulatory change is for
lactase (Bersaglieri et al. 2004; Enattah et al. 2004; Tishkoff
et al. 2007). As might be expected, we did not detect an
eQTL for lactase in these cell lines, and so this well-known
example does not contribute to our overall signal of enrich-
ment (despite a strong selection signal around lactase). Sim-
ilarly, an SNP in the 5# untranslated regions of GDF5 has
been shown to affect expression levels of GDF5 in chon-
drogenic cells and to contribute to osteoarthritis in east
Asians (Miyamoto et al. 2007). The allele that increases
the risk of osteoarthritis is at the center of a strong iHS sig-
nal in the HapMap Asians; however, the expression change
is also not observed in our data. This allele has also been
associated with decreased height in samples of Europeans
and African Americans (although in the latter study, the
identity of the functional SNP is unclear; Sanna et al.
2008). Clearly, this region is associated with important hu-
man phenotypes, and the selected haplotype appears to be
linked to these phenotypes. However, our analysis of the
association between selection and gene expression of
GDF5 is limited by the fact that we do not detect eQTLs
for GDF5 in our data, possibly because it is not expressed
in this tissue. Therefore, it will be important to repeat this
type of analysis across a broad range of tissues and at a range
of developmental stages, in order to obtain a more complete
view of the importance of cis-regulation as a target of recent
selection. It is also worth noting that these data were col-
lected from transformed lymphoblasts and the expression
patterns in these cells are likely to differ from those in
the untransformed tissue. However, although this may com-
plicate the interpretation of individual eQTL signals, it is
hard to see how this could create a false overall association
between eQTLs and selection signals.

This study also exemplifies the future role of overlay-
ing phenotypic or functional information onto selection sig-
nals. Typically, haplotype-based signals span tens or
hundreds of kilobases, including many genes. One of the
greatest challenges facing studies of genomic selection
scans is to interpret the selection signals that we find: which
variants or genes are the actual targets of a selection signal
and how do the variants affect phenotype? In a small subset
of cases, broad signals include very strong candidate genes
(lactase and the skin pigmentation gene SLC24A5 are two
such examples Bersaglieri et al. [2004]; Lamason et al.
[2005]). However, for most selection signals, there is little
to guide us as to the targets of selection. By intersecting
selection data with external information such as eQTL data
or phenotype associations, we anticipate that it will become
possible to link many more of the selection signals to genes
and phenotypes. From there, we will begin to gain a better
understanding of the role of selection in modifying the
human phenotype.

Electronic Resources

An online browser providing haplotype plots and iHS
scores for all HapMap SNPs is at http://haplotter.uchicago.
edu.
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Supplementary Material

Supplementary information is available at Molec-
ular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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