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Abstract

In complex diseases, various combinations of genomic perturbations often lead to the same phenotype. On a molecular
level, combinations of genomic perturbations are assumed to dys-regulate the same cellular pathways. Such a pathway-
centric perspective is fundamental to understanding the mechanisms of complex diseases and the identification of
potential drug targets. In order to provide an integrated perspective on complex disease mechanisms, we developed a
novel computational method to simultaneously identify causal genes and dys-regulated pathways. First, we identified a
representative set of genes that are differentially expressed in cancer compared to non-tumor control cases. Assuming that
disease-associated gene expression changes are caused by genomic alterations, we determined potential paths from such
genomic causes to target genes through a network of molecular interactions. Applying our method to sets of genomic
alterations and gene expression profiles of 158 Glioblastoma multiforme (GBM) patients we uncovered candidate causal
genes and causal paths that are potentially responsible for the altered expression of disease genes. We discovered a set of
putative causal genes that potentially play a role in the disease. Combining an expression Quantitative Trait Loci (eQTL)
analysis with pathway information, our approach allowed us not only to identify potential causal genes but also to find
intermediate nodes and pathways mediating the information flow between causal and target genes. Our results indicate
that different genomic perturbations indeed dys-regulate the same functional pathways, supporting a pathway-centric
perspective of cancer. While copy number alterations and gene expression data of glioblastoma patients provided
opportunities to test our approach, our method can be applied to any disease system where genetic variations play a
fundamental causal role.
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Introduction

Complex diseases are typically caused by combinations of

molecular perturbations that might vary strongly in different patients,

yet dys-regulate the same component of a cellular system [1]. In

recent years, whole-genome gene expression sets have increasingly

been used to search for markers, allowing an improved diagnosis of

diseases or classification of their subtypes [2,3,4,5,6,7,8]. Several

approaches combined expression measurements with various types of

direct or indirect pathway information, leading to improved disease

classification [9,10,11,12], prioritization of disease associated genes

[13,14,15] and identification of disease specific dysregulated path-

ways [16]. Furthermore, considerable efforts towards integrated

approaches for uncovering disease causing genes [17,18] and

elucidation of relations between variability in gene expression and

genotype [19] have recently been made. In particular, Tu et al.

developed a random walk approach to infer regulatory pathways

[13,14,20] in yeast. Suthram et al. [21] further improved this

approach by using the analogy between random walks and current

flow in electric circuits. Recently, Yeger-Lotem et al. developed a

min-cost flow based algorithm, uncovering cellular pathways that are

implicated in several neurodegenerative disorders [22].

Studying associations between individual disease genes and

genotype alterations allowed us to uncover potential causative

factors and affected molecular entities. While previous methods

provided valuable insights into the modular nature of diseases by

elucidating groups of differentially expressed genes, the flow of

information from potential causes to effected genes in the

molecular interaction network hasn’t been investigated. In this

paper, we present a genome-wide approach to simultaneously

determine dys-regulated pathways and their putative causes/

factors. We utilized gene expression and genomic alteration

profiles of 158 glioblastoma multiforme (GBM) patients. We

started by selecting a set of differentially expressed target genes,

and then identified pathways connecting genes that are located in

areas of genomic alterations. Then, we selected target genes,

choosing pathways that are likely to explain the expression

abnormalities of target genes. Consistent with the general strategy

of eQTL analysis, we assumed that expression variations of the

target genes are, at least in part, caused by genomic alterations.

Specifically, we first used association analysis to identify possible

cause-target gene pairs. Then, we modeled the propagation of

information from a potentially causal gene to a target gene as the

flow of electric current through a network of molecular

interactions. To assess the significance of identified pathways we

carefully designed a permutation test. Finally, we used a graph-

theoretical approach to further narrow down the selected set of

putative causal genes. We validated our approach by testing the
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enrichment of selected causal genes with known GBM/Glioma

disease genes and literature searches. We also examined the

subnetworks, connecting causal and target genes and identified

cancer hub genes and sets of functionally related genes which

indicate involvement of specific cellular pathways. Among these

pathways we found several expected key players such as EGFR

and Insulin Receptor signaling pathways, RAS signaling, as well as

a glioma-associated regulation of transforming growth factor-b2

production and SMAD pathway. Importantly, such pathways can

be considered as ‘‘GO biological process hubs’’ or ‘‘highways’’,

connecting many different causal genes with their targets. Such an

observation supports the hypothesis that many different genomic

alterations potentially dys-regulate the same pathways in complex

diseases. In addition, we analyzed the global properties of

identified associations and found a cluster of causal/disease gene

activities on chromosomes that are strongly affected by genomic

alterations. Such results allowed us to identify candidate causal

genes for prominent signaling and regulation proteins that

putatively play a role in GBM. Comparing our method to a basic

genome-wide association approach, we demonstrated the in-

creased predictive power of our model.

Results

Outline of the Method
We developed a novel computational method to identify causal

genes and associated dys-regulated pathways by an integration of

several layers of data, including profiles of gene expression and

genomic alterations (Fig. 1). Specifically, we assembled an

interaction network, utilizing molecular interaction data such as

protein-protein interactions, phosphorylation events and protein-

transcription factor interactions. Briefly, our algorithm consists of

four main steps (Figures 1A–D): (i) selection of a set of differentially

expressed target genes, (ii) identification of possible causal loci of

each target gene by an eQTL-analysis, (iii) identification of a set of

putative causal genes by determining pathways between causal

and target genes through the network of molecular interactions,

and (iv) determination of a subset of causal genes that best explain

the underlying disease cases. In the following, we present a more

detailed description of these four steps. Further details are

described in the corresponding sections of Materials & Methods.

Selecting Target Genes in GBMs
Since a complex disease may manifest itself differently in

patients, we first developed a method that selects a set of genes that

are differentially expressed in the disease cases and cover

individual patient alterations. To identify such representative

genes, we modeled the selection of target genes as a multi-set cover

problem (Fig. 1A). Specifically, we determined a set of genes that

were differentially expressed in 158 glioblastoma cases compared

to 32 non-tumor control cases (see selection of target genes section

in Materials & Methods). We defined that a differentially

expressed gene covers a particular disease case if the gene was

differentially expressed in the underlying case. Clearly, genes that

cover many cases are expected to represent genes and pathways

commonly dys-regulated in the disease. To capture disease

heterogeneities we also demanded that each disease case was

covered by at least a certain number of target genes, a key

parameter of our approach. Intuitively, with very small coverage

we can identify only the most commonly differentially expressed

genes. By increasing coverage we can capture genes that are

specific to smaller subgroups of patients. Thus, we required a

certain level of coverage and simultaneously demanded that each

gene covers as many cases as possible. To achieve this goal, we

formulated the problem as a minimum multi-set cover (see

selection of target genes section in Materials & Methods) and

solved it using a greedy algorithm. We tested several combinations

of coverage and the number of outliers (a second, less prominent

parameter of the algorithm) and observed that obtained gene sets

strongly overlapped, demonstrating the robustness of our ap-

proach (see Text S1 for details of the algorithm and parameter

settings). Demanding coverage of 55 and allowing 3 outliers, we

selected 74 target genes as presented in Fig. 2 (see Table S1 for an

annotated list of target genes).

Association between Gene Expression and Copy Number
Alterations

The goal of this step is to identify an initial set of possible

associations between copy number variations and target genes for

further analysis (Fig. 1B). Since genomic variations in neighbor-

ing regions tend to be highly correlated, we first chose a subset

of 911 representative loci (i.e. tag loci), significantly lowering

computational costs (see eQTL mapping section in Materials and

Methods). We observed that the number of genes that a tag locus

can harbor varied strongly and found on average 27 genes per

tag locus. Applying a standard eQTL approach [19,23] we

performed a linear regression analysis, allowing us to determine

genome-wide associations between the expression of target genes

and copy number alterations of tag loci. Specifically, we

calculated p-values for each gene-locus pair under the null

hypothesis that the slope of the linear regression is 0. This way we

selected, for further analysis, 3,091 associated gene-locus pairs

(p,0.01), amounting to ,5% of all 67,414 (911674) tested pairs.

On average, we selected 41 associated tag loci per target gene,

while 776 tag loci had at least one target gene (see Text S1 for

algorithmic details).

Author Summary

It is now being recognized that complex diseases should
be studied from the perspective of dys-regulated path-
ways and processes rather than individual genes. Indeed,
various combinations of molecular perturbations might
lead to the same disease. In such cases, responses to these
perturbations are expected to converge to common
pathways. In addition, signals that are associated with
each individual perturbation might be weak, rendering
studies of complex diseases particularly challenging.
Aiming to provide an integrated perspective on complex
disease mechanisms we developed a novel computational
method to simultaneously identify causal genes and dys-
regulated pathways. Starting with an identification of a
disease-associated set of genes and their statistical
associations with genomic alterations, we utilized graph-
theoretical techniques and combinatorial algorithms to
determine potential paths from the genomic causes
through a network of molecular interactions. We applied
our method to sets of genomic alterations and gene
expression profiles of Glioblastoma multiforme (GBM)
patients, uncovering candidate causal genes and causal
paths that are potentially responsible for the altered
expression of disease associated target genes. While copy
number alterations and gene expression data of GBM
patients provided opportunities to test our approach, our
method can be applied to any disease system where
genetic alterations play a fundamental causal role, and
provides an important step toward the understanding of
complex diseases.

Dysregulated Pathways in Complex Diseases
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Candidate Causal Genes in eQTL Regions
The relatively liberal p-value threshold used in the previous step

allowed us to retain most of potentially interesting relationships.

Although this step filtered out the least promising pairs, a large

number of false positives are expected to pass this threshold.

Reducing false discovery rate by simply decreasing the p-value

threshold would retain extremely well correlated loci-target gene

pairs only, therefore missing a large spectrum of potentially

interesting pairs. In fact, the correlation between copy number

variation in the causal gene and the gene expression of its target

gene doesn’t have to be strong since such a signal might have been

affected by varying degradation rates and posttranslational

modifications. Furthermore, genotypic alterations in several loci

might lead to the dys-regulation of the same pathway and

therefore changing the expression of a target gene in potentially

non-additive, epistatic ways. Since each genetically altered region

might harbor a large number of genes, we also aimed to identify

the most likely causal genes within each region.

In order to account for such effects we utilized protein-protein,

protein-DNA and phosphorylation networks (Fig. 1C). Existence

of statistically significant paths through an interaction network,

connecting putative causal and target genes not only provides

additional support for the relationship but also helps to identify

genes that participate in propagating the signal. This approach

also allows identifying the gene(s) within the altered regions

which were most likely the cause of the observed expression

changes of the selected target genes (Fig. 1C). Motivated by the

results of Suthram et al. [21], we adopted a variant of a circuit

flow algorithm and modeled the problem of finding a pathway

through an interaction network as current flow in an electric

circuit. We defined the conductance of each interaction as a

function of the expression correlation of the genes at the

endpoints of edges and the target gene. Such a model allows the

current to preferentially use interactions that more likely mediate

information from a causal to a target gene. Stipulating that only

transcription factors can change the expression of genes, we

Figure 1. Outline of our method. (A) We first selected target genes that were differentially expressed in disease cases, using a multi-set cover
approach. (B) In the second step, we detected genome-wide associations between gene expression changes of target genes and genomic
alterations, allowing us to find potential causal genomic areas. (C) In the third step, we determined causal paths from genomic alterations (i.e. causal
genes) to target genes by modeling and solving a current flow problem through a circuit of molecular interactions. (D) To select a final set of causal
genes, we designed a weighted multi-set cover algorithm. Constructing a bipartite graph between candidate causal genes and disease cases, we
labeled each edge with the associated set of target genes that were affected by the causal gene and were differentially expressed in the
corresponding disease case. In the final set-cover, causal genes in boxes covered each disease case with at least two target genes, allowing one
exception.
doi:10.1371/journal.pcbi.1001095.g001

Dysregulated Pathways in Complex Diseases
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required that a causal path ended with a link between a

transcription factor and the target gene. The flow of current

from the target to its potential causal genes was computed by

solving a system of linear equations, allowing us to find a set of

candidate causal genes for each target gene. Importantly, we

considered edges corresponding to phosphorylation events and

protein-DNA interactions as directed, prompting a computa-

tional problem that theoretically can be tackled with a linear

programming approach [21]. However, the large size of the

underlying human interaction network imposed considerable

computational costs, prompting us to develop a heuristic that

preserved the directions of such molecular interactions. As a

null-model, we utilized a permutation test to estimate the

statistical significance of the current flow. After obtaining

empirical p-values we selected candidate causal genes for each

target gene if the empirical, gene specific p-value was ,0.05 (for

algorithmic details and parameter settings please see solution of

the electric circuit problem section in Materials & Methods and

Supplement Text S1). We obtained 1,763 pairs, consisting of 74

target and 701 potential causal genes that included a significant

number of GBM and glioma-specific genes (Table 1). Since we

identified associated gene-locus pairs with p,0.01 and found

target-causal gene pairs with p,0.05, all 1,763 pairs had an

estimated nominal p-value ,561024.

Final Causal Genes Explaining Disease Cases
While the electric circuit approach reduced the number of

putative causal genes significantly, the size of this gene set was still

considerably large. In the final step, we applied another filter by

considering two approaches – a statistical method and a hypothesis

driven optimization approach. In the statistical approach, we

accounted for multiple hypothesis testing and used a p-value cut-

off of 561028, producing 280 candidate causal genes. In the

optimization-based approach, we identified relevant causal genes

by selecting the set of genes that best explained all disease cases.

We defined that a putative causal gene explains a disease case if its

corresponding tag locus has a copy number alteration and its

affected target genes (i.e., genes sending a significant amount of

current to the causal gene) were differentially expressed in the

underlying disease case. In other words, if a link between a causal

gene and a disease case existed, we expected to observe both a

genomic alteration of a causal gene and differential expression of

its target gene in the same disease case. Since a causal gene may

potentially affect one or more target genes, we defined the weight of

the explanation as the number of such target genes. Therefore, a

gene that explained a disease by perturbing a larger number of

target genes had a higher weight, increasing the likelihood to be

chosen as a final causal gene (Fig. 1D). To choose a set of causal

genes explaining all cases except a few outliers with a minimum

Figure 2. Lists of selected target, causal and hub genes. Target and hub genes that are labeled red were up-regulated while genes labeled
green were down-regulated. Causal genes are marked in red (green) if they were found in amplified (deleted) genomic regions. We defined hubs as
genes that appeared in more than 10 causal pathways through the interaction network. Numbers in parentheses indicate the genes’ actual
occurrences.
doi:10.1371/journal.pcbi.1001095.g002

Dysregulated Pathways in Complex Diseases
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number of causal genes, we formulated the problem as a variant of

the minimum weighted multi-set cover problem (please see selecting a final

set of causal genes section in Materials & Methods and Text S1 for

algorithmic details). Utilizing a greedy algorithm, we determined a

set of 128 putative, final causal genes that were involved in 625

causal and target gene pairs. Using a permutation test, we found

that the random selection of a gene set of at most this size occurred

with p,3.161024.

Validation
In the following, we provide a quantitative validation of the set

of putative causal genes, pathway hubs and target genes. Where

applicable, we also compared our results to previous approaches.

Subsequently, we established the robustness of our method with

respect to parameter settings. Finally, we analyzed individual

genes and pathways.

To assess the significance of our set of causal genes, we

determined the overlap with sets of GBM/glioma specific genes.

In particular, AceView [24] provided a list of 93 GBM specific

genes. In the first step of the algorithm, we determined associations

between copy number variations and expression of target genes,

yielding 16,056 associated genes that had a large, but statistically

insignificant overlap with the set of glioblastoma specific genes

(p,0.56, Table 1). The application of the electric circuit algorithm

reduced this set to 701 candidate causal genes with a significant

enrichment of 10 GBM specific and 25 Glioma related genes

(p,0.05, Table 1). We also checked the advantage of using the

current flow approach instead of simply selecting pairs based on

more stringent p-value cut-offs. Namely, given our eQTL results,

we used a Bonferroni-corrected threshold of 1.561027, providing

24 pairs between 4 target genes and 22 loci that harbor a total of

1,026 genes, including 12 GBM relevant genes from AceView

(p,0.003, Table 1). However, this approach failed to find any

significant associations for most of the target genes. For the 4

target genes, we obtained a rather big set of candidate causal

genes, which was not enriched with glioma genes in DAVID.

Next, we focused on the last step of the algorithm. As a result of

the current flow step we obtained 1,763 pairs with a nominal p-

value ,561024, involving 701 causal genes. Using the weighted

set cover approach, we identified 128 causal genes that harbored 6

GBM relevant genes (Table 1). Specifically, we found that both

sets shared CDKN2A, EGFR, ERBB4, PTEN, RB1 and TP53

(p,4.761024). Utilizing a set of glioma relevant genes from

DAVID database [25,26], we obtained consistent results (Table 1).

In contrast, by Bonferroni-correcting causal-target gene pairs we

obtained 280 causal genes, including only 4 GBM related genes

according to AceView (p,0.17, Table 1).

To test an alternative approach, we greedily chose loci with

smallest p-values until we pooled at least 128 putative causal genes.

The obtained set of putative causal genes included only 2 GBM

genes (p,0.3), suggesting that the current flow algorithm and the

subsequent filtering step with a set-cover allowed us to uncover

more cancer relevant genes than the simple association approach.

Focusing on the final set of 128 causal genes, we utilized

canonical pathway data from DAVID and found that the final set

of 128 causal genes was significantly enriched with glioma, cell

cycle genes, p53 signaling pathway and proteasomal genes

(p,0.05). In Table 2 we listed the most enriched annotated

pathways, their genes and p-values. The complete list of 128 final

causal genes is shown in Fig. 2, and an annotated list is provided in

Table S2.

We also assessed the importance of genes in the paths from

putative causal genes to their target genes. As described in

identifying dysregulated pathways section in Materials &Methods,

we identified causal paths between a target and a causal gene by

finding a maximum current path through the network of

molecular interactions. In particular, we demanded that the genes

in causal paths have significant p-values while the current passing

through all genes in the path is maximized (please see identifying

dysregulated pathways section in Materials & Methods and also

Text S1 for algorithmic details), allowing us to identify 461 genes

in 995 interactions. Using a threshold of more than 10 occurrences

in causal paths (corresponding to 20% of most frequently

appearing genes), we observed the emergence of hubs, genes that

appeared in a disproportionally large number of pathways (Fig. 2).

Such a set of hubs contained important transcription factors such

as MYC and E2F1 and oncogenes such as JUN and RELA and

was enriched with genes that appeared in cancer pathways

(p,2.261028), the cell cycle (p,3.561026) and several important

signaling pathways from DAVID. While such hub genes were

clearly related to cancer, we hardly would have identified them by

analyzing differentially expressed genes or copy number alter-

ations alone, demonstrating that the pathway-based approach

considerably helped us to uncover these important players.

Utilizing DAVID, we also found that our target gene set was

enriched with genes in the cell cycle (p,7.661024), p53 signaling

pathway (p,9.161024), and RB Tumor Suppressor/Checkpoint

Signaling in response to DNA damage (p,4.861023). Among

target genes, we also found up-regulated WEE1, a tyrosine kinase

that phosphorylates CDK1 [27], a signaling event that is crucial for

the cyclin-dependent passage of various cell cycle checkpoints.

Previous reports suggested that overexpression of WEE1 is critical

for the viability of some cancer types, and cell lines displaying higher

expression levels of WEE1 are sensitive to WEE1 inhibition [28].

Table 1. Functional analysis of genes selected in each step.

A. Number of Genes B. AceView (GBM) C. DAVID (Glioma)

Genome-wide association analysis 16056 0.56 (75) 0.027 (56)

Genome-wide association analysis + Bonferroni correction 1026 0.0029 (12) None

Circuit flow algorithm 701 0.045 (10) 1.3610210 (25)

Circuit flow + Bonferroni correction 280 0.17 (4) 1.461027(16)

Circuit flow + set cover 128 4.761024 (6) 4.661024 (8)

(A) To determine the statistical significance of selected genes, we counted the number of genes identified in each step of our analysis. (B) Utilizing a set of 93 genes that
are implicated in GBMs as of Aceview we calculated the statistical significance of the overlap (numbers in parentheses) with a hypergeometric distribution. We found
that the significance increased, applying the steps in our approach. (C) Calculating p-values with a modified Fisher’s exact test, we obtained a similar result for a set of
glioma genes as of DAVID as well.
doi:10.1371/journal.pcbi.1001095.t001
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In an additional test, we eliminated the requirement that the last

node on a path leading to a target gene must be a transcription

factor. With this change, we selected parameters in our multiset-

cover approach to obtain an alternative set with approximately the

same number of target genes and we found that it was almost

disjoint from our original set of 74 target genes (Fig. 3A). Despite

these differences, the final sets of causal genes had a strong overlap

(Fig. 3B) of 58 genes that we found in both sets. Such a level of

robustness is consistent with a pathway-centric view of complex

diseases: different sets of target genes are bundled within dys-

regulated pathways that are influenced by specific combinations of

causal genes. Even though the two target gene sets looked largely

different, both sets include genes that are differentially expressed in

the disease cases. In addition, we found that the genes are close

relatives in the network: the average distance between the two sets

of target genes is 1.7 (p = 1.7610212), suggesting that the genes

were selected from the same dysregulated pathways.

Chromosomal Analysis of Causal Genes
In Fig. 4A, we show the profile of genomic alterations in GBM

where we observed large areas of genomic amplification on

chromosome 7 and deletions on chromosome 10 (upper panel),

alterations that coincided with the genomic locations of EGFR and

PTEN. We located the genomic position of our 128 causal genes

and counted the number of corresponding target genes. We largely

observed that causal genes on chromosome 7 and 10 were strongly

connected to target genes, a pattern that strongly coincided with

the signature alterations of GBMs.

Since a target and a causal gene might be located on different

chromosomes, we determined the occurrences of such chromo-

some combinations using all target-causal pairs. Constructing such

a matrix (Fig. 4B) we found that strong causal signals emerged

from chromosomes 7 and 10. In turn, we observed that target

genes fell into three large clusters. In particular, target genes on

chromosomes 2, 3, 6, 10, 11, 12, 19 and 20 appeared to have

numerous links to causal genes located on chromosomes 7 and 10.

Focusing on target and causal genes in these areas, we found a

large cluster (box, Fig. 4C) of up-regulated genes that were

connected to an array of largely down-regulated causal genes.

Literature-Based Validation of Individual Causal Genes
In addition, we also looked for literature-based validation of

other causal genes. In particular we found RHOBOTB2, a

recently discovered tumor suppressor gene [29], in our set of 128

causal genes. We observed that this gene lacked a strong genomic

alteration signal, suggesting that our approach was also capable of

discovering a subtle causal signature that may have been otherwise

missed with a simple disease association analysis. We also found

some causal genes with strong genomic alterations that, although

not included in AceView nor in DAVID, are well known to be

associated with cancer. For example, our final causal gene set

included GBAS (for its causal network, see Text S1), a gene that

was reported amplified in more than 40% of glioblastomas [30,31]

and CEBPA (enhancer binding protein) that was amplified in

about 10% of leukemia cases [32].

Dysregulated Pathways and Subnetworks
We obtained 128 causal subnetworks from causal genes to their

target genes (see identifying dysregulated pathways section in

Materials and Methods). For each causal subnetwork, we

performed an enrichment analysis of GO-annotated biological

processes. Due to the hierarchical structure of GO terms, results

included many redundant terms, and general terms tend to have

more hits. In Table 3, we listed the most specific GO-annotated

biological processes with which more than one subnetworks are

enriched. For the full list, see Table S3. In Supplementary Dataset

S1 we provided a cytoscape file that allows an interactive

exploration of enrichment in the GO hierarchy. The frequently

enriched GO processes included several classical cancer-related

pathways. For example, 9 causal subnetworks are enriched with

epidermal growth factor receptor signaling pathway that has anti-

apoptotic properties and may enhance proliferation, invasion, and

migration of glioma cells [33,34,35]. Similarly, 6 causal-target

relationships affected the Insulin signaling pathway. Indeed, recent

reports provide an additional evidence for the role of this pathway

in glioblastoma [36], supporting the hypothesis that alterations in

different genes may dysregulate the same pathways and cause the

same disease. Other less frequent pathways were positive

regulation of MAP kinase activity, regulation of nitric-oxide

synthase activity, estrogen receptor signaling pathway, JAK-STAT

cascade and the regulation of transforming growth factor-beta2

Table 2. Functional analysis of final causal genes.

P-value Genes

Glioma 0.008 PRKCA,EGFR,AKT1,CDKN2A,CAMK2G,TP53,RB1,PTEN

Cell cycle 0.028 MCM7,CDKN2A,CDC2,TP53,ORC5L,RB1,ATR,BUB3,CUL1

p53 signaling pathway 0.030 CDKN2A,CDC2,TP53,ATR,FAS,THBS1,PTEN

Proteasome 0.026 PSMA1,PSMC6,PSMB1,PSMC3,PSMA5,PSMA4

Analyzing the enrichment in different functional gene sets provided by DAVID with a modified Fisher’s exact test, we found that our final set of 128 causal genes was
significantly overlapping with a set of glioma, cell cycle, p53 signaling and proteasome genes.
doi:10.1371/journal.pcbi.1001095.t002

Figure 3. The overlap of two different sets of causal/target
genes. In the Venn-diagram in (A) we show the overlap of two
different sets of target genes. Even though these sets were almost
disjoint, we found in (B) that the corresponding sets of their causal
genes overlapped by up to 45%. Even though the initial sets of target
genes were hardly similar, we concluded that our method remarkably
compensated this disparity by determining strongly overlapping sets of
causal genes.
doi:10.1371/journal.pcbi.1001095.g003

Dysregulated Pathways in Complex Diseases
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production. In particular, transforming growth factor-beta2

(TGFB2) is known to be an important modulator of glioma

invasion [37,38]. Of particular interest is also a related SMAD

pathway that occurred in two of our causal subnetworks. While it

is debated if this pathway plays a role in TGF b-promoted

oncogenesis, a recent study indicated that SMAD-dependent

signaling through the induction of PDGF-B has a proliferative and

oncogenic role in glioma [39], which is in line with the presence of

SMAD genes in our causal subnetworks.

Testing if these GO-processes were enriched in the set of target

genes, we only found an enrichment of a small number of very

general, mostly cell-cycle related pathways (see Table S4 for the

complete list). Only one term ‘‘G1/S transition of mitotic cell

cycle’’ overlapped with the list of most specific terms discovered

through the analysis with flow-based causal paths. The lack of

specific terms in the GO analysis using target genes was expected

since target genes were sampled from multiple dys-regulated

pathways, therefore not leading to significant enrichment of

specific pathways.

We took a closer look at paths involving PTEN and EGFR. In

Fig. 5, we show a subnet of dysregulated pathways with PTEN as a

causal gene. We observed that the influence PTEN might exert on

target genes was largely mediated by prominent transcription

factors, such as TP53, MYC and MYB. Compared to pathways

from DAVID [25,26], this small network of causal paths was

enriched with cell cycle genes (p,0.003) and glioma genes

(p,0.02) as well as various types of cancer genes. As their causal

roles are indicated in Fig. 4C, we observed that PTEN and CDC2

(see Text S1) might exert their influence on the expression of

WEE1 through transcription factors TP53 and E2F4. Since CDC2

codes for CDK1, which is phosphorylated by WEE1 [27] , our

results suggest a feedback loop that might be important for cancer.

Figure 4. Chromosomal analysis of causal genes. (A) In the upper panel, we show the profile of genomic alterations in glioblastomas, where
we observed large areas of genomic amplification on chromosome 7 and deletions on chromosome 10. Utilizing predictions of causal genes, we
observe that the profile in the lower panel of occurrences (yellow bars) coincide well with the profile of alterations in the upper panel. Focusing on
causal genes in the final set-cover (green bars), we recover the initial patterns. In (B), we constructed a matrix, showing the number of pairs of target
and causal genes on their corresponding chromosomes. We found that causal genes on chromosomes 7 and 10 have numerous links to target genes
on chromosomes 2, 3, 6, 10, 11, 12, 19 and 20 (boxed area). (C) Focusing on target genes in these chromosomal areas, we marked the presence of a
causal path through a molecular interaction network between a target and causal gene as peach in the heat map. While bars indicated the
differential expression of the corresponding genes (green: down, red: up), we found a large cluster of up-regulated target genes that were regulated
by an array of largely down-regulated causal genes (boxed area).
doi:10.1371/journal.pcbi.1001095.g004

Dysregulated Pathways in Complex Diseases

PLoS Computational Biology | www.ploscompbiol.org 7 March 2011 | Volume 7 | Issue 3 | e1001095



EGFR is highly expressed in disease cases and was selected as

both a target and causal gene. The considerable amplifications of

chromosome 7 make EGFR a strong candidate for a causal gene.

Indeed, we found causal paths that connected EGFR to a few target

genes (Fig. 6A). However, we also found a rather large number of

causal genes that regulated the expression of EGFR as a target gene

(Fig. 6B). Such observations suggest that EGFR might play a dual

role as a driver of changed gene expression as well as integrator of

causal molecular information from other genomic sites. Indeed, we

found numerous disease cases where EGFR was over-expressed

without alterations in its genomic location. Instead, we observed

that there exist a number of potential causal genes of EGFR with

copy number alterations such as ANXA11, CDKN2A, CHUK,

PTEN, IFNA4 and ZNF107 among others. Utilizing pathway

information from DAVID, we found that the subnet with EGFR as

a target gene was highly enriched with glioma genes (p,0.004), the

MAPK signaling pathway (p,0.02), and pathways in cancer in

general (p,861028).

Discussion

Integrating phenotypic, genomic and interaction data, we

introduced a novel approach for the simultaneous identification

of causal disease genes and dys-regulated pathways. Such causal

genes may include potential drivers of a tumor’s emergence as well

as potential drug targets. After selecting target genes that covered

the underlying disease cases, we determined associations between

altered genomic loci and changed expression levels of target genes

by a simple eQTL analysis. The key idea of our approach is to

combine evidence from association analysis with evidence from

pathway analysis. We also demonstrated the power of graph-

theoretical approaches in the selection of gene sets and

determination of cause-target relationships. Indeed, set cover

approaches are increasingly recognized as appropriate tools for

selecting disease genes [16,40], while current flow approaches or

equivalent random walk models have been successfully used for

modeling of information flow in biological and social networks

[41,42,43].

Adopting a current flow algorithm, we combined gene

expression and molecular interaction data to determine causal

paths through interaction networks. This approach allowed for

preferential use of network paths supported by expression data,

bypassing potential problems of pure topology based methods such

as shortest paths that treat all edges equally. Namely, the

assignment of resistance to network edges pushed electric current

preferentially through nodes that were expression-correlated with

the target genes. However, our method also tolerates a fraction of

non-correlated nodes, balancing the impact of network connec-

tions and a strongly varying degree of gene expression correlation

of nodes in the paths.

Current networks of protein interactions, protein-DNA inter-

actions and phosphorylation events are incomplete and noisy. In

addition, transcription factors for many genes are unknown, a

shortcoming that certainly affected the completeness of our results.

However, the problem is alleviated by the fact that cancer is

considered as a disease of pathways, suggesting that there exist

many ways of selecting a representative set of target genes that

represent dys-regulated pathways. Considering a cluster of

neighboring genes that participate in the same pathway, any

member of the cluster might serve as a target gene to uncover

causal genes dys-regulating the underlying pathway. We found

that the choice of different target genes provided robust results,

diminishing the effects of incomplete data.

We used linear regression for associations to take advantage of

its simplicity. To capture the complex relationship of copy number

and gene expression more accurately, other non-linear methods

can also be considered. However, little is currently known about

the precise impact of gene copy number variations on gene

expression levels in model organisms, a problem that might even

be aggravated by the presence of potential epistatic interactions

between loci. In our approach, we alleviated such problems by

adopting a relatively liberal p-value cut-off in the initial step of the

algorithm. To compensate for this choice, we augmented genome-

wide associations with putative paths through a network of

molecular interactions. This step allowed us to filter spurious

associations and simultaneously uncover other molecules that

participate- in the propagation of the perturbation.

Being based on high-throughput interaction data, our approach

does not allow us to propose specific molecular mechanisms of

signal propagation at this point. Although our method provides an

Table 3. Enrichment of GO biological processes in causal
subnetworks.

GO biological process #

cell cycle arrest 10

epidermal growth factor receptor signaling pathway 9

negative regulation of cell growth 9

Ras protein signal transduction 9

regulation of sequestering of triglyceride 8

cell proliferation 7

nuclear mRNA splicing, via spliceosome 7

regulation of cholesterol storage 7

nucleotide-excision repair 7

RNA elongation from RNA polymerase II promoter 7

insulin receptor signaling pathway 6

transcription initiation from RNA polymerase II promoter 6

N-terminal peptidyl-lysine acetylation 5

phosphoinositide-mediated signaling 5

positive regulation of lipid storage 4

positive regulation of specific transcription from
RNA polymerase II promoter

3

positive regulation of epithelial cell proliferation 3

base-excision repair 2

negative regulation of hydrolase activity 2

gland development 2

positive regulation of MAP kinase activity 2

regulation of nitric-oxide synthase activity 2

estrogen receptor signaling pathway 2

regulation of receptor biosynthetic process 2

response to organic substance 2

JAK-STAT cascade 2

regulation of transforming growth factor-beta2 production 2

G1/S transition of mitotic cell cycle 2

SMAD protein nuclear translocation 2

For each of 128 causal subnets, we determined the enrichment of biological
processes as annotated in GO (corrected p-value ,0.05, Boferroni corrected).
Counting the number of occurrences of each process in the causal
subnetworks, we listed the most specific GO annotated biological processes that
appeared enriched in at least 2 subnetworks.
doi:10.1371/journal.pcbi.1001095.t003
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important step forward suggesting potential intermediate nodes for

observed associations, uncovered pathways should be considered

testable hypotheses rather than ultimate and mechanistic proofs of

causal relationships.

The augmentation of associated gene-loci pairs with pathway

information resulted in a very powerful strategy, allowing us to not

only uncover potential causal genes, but also find intermediate

nodes on molecular network paths that mediated information

Figure 6. The network of causal paths from and to EGFR. In (A) we show a network of causal paths that included EGFR as a causal gene. While
this network was rather small, we found a large network of causal paths where EGFR was a target gene in (B). Specifically, we observed that EGFR
might be influenced by numerous causal genes through prominent transcription factors.
doi:10.1371/journal.pcbi.1001095.g006

Figure 5. The network of causal paths from PTEN. We observed that PTEN might exert its influence on target genes (the endpoints of each
causal path) through prominent transcription factors such as TP53, MYC and MYB.
doi:10.1371/journal.pcbi.1001095.g005
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between causal and target genes. Using this method, we also

identified functional GO-pathways that mediate many genotype -

phenotype associations in GBM. In addition to identifying putative

causal genes and dys-regulated functional pathways, our approach

provided evidences for the pathway-centric perspective of complex

diseases. Firstly, we showed that various genetic perturbations lead

to dys-regulation of the same functional pathways. Furthermore,

consistent with the hypothesis that genotypic variations dys-

regulate whole pathways rather than target individual genes, we

found that different sets of target genes sampled from the same

pathways lead to uncovering the same causal genotypic variations.

Our method consists of multiple steps of analyses. However, each

individual step can be used separately, depending on a specific

application. For example, in the first step we selected a set of

differentially expressed genes in cancer as target genes. However,

this set can be replaced with other user selected set of interest,

therefore facilitating targeted studies of particular pathways.

To our best knowledge, our method is the first genome-wide

computational approach that reached beyond a simple association

analysis. In addition, our method supported genome-wide

associations by paths through interaction networks that can, in

principle, propagate the information flow from causal genes to

target genes. While copy number variation and gene expression

data of glioblastoma patients provided an opportunity to test our

approach, our method can be applied to any disease system where

genetic variations play a fundamental, causal role.

Materials and Methods

mRNA Data Treatment
We utilized 158 patient and 32 non-tumor control samples

collected from the NCI-sponsored Glioma Molecular Diagnostic

Initiative (GMDI) [44,45] which were profiled using HG-U133

Plus 2.0 arrays. Arrays were normalized at the PM and MM probe

level with dChip [44,46]. Using the average difference model to

compute expression values, model-based expression levels were

calculated with normalized probe level data. Negative average

differences (MM . PM) were set to 0 after log-transforming

expression values [44]. Accounting for weak signal intensities, all

probesets with more than 10% of zero log-transformed expression

values were removed. To represent a gene, we chose the

corresponding probeset with the highest mean intensity in the

tumor and control samples. Gene expression profiles are available

through the Rembrandt database (http://rembrandt.nci.nih.gov/).

Determination of Copy Number Alterations
All patient and non-tumor control samples were hybridized on

the Genechip Human Mapping 100K arrays, and copy numbers

were calculated using Affymetrix Copy Number Analysis Tool

(CNAT 4). After probe-level normalization and summarization,

calculated log2-tranformed ratios were used to estimate raw copy

numbers. Using a Gaussian approach, raw SNP profiles were

smoothed (.500 kb window by default) and segmented using a

Hidden Markov Model approach [45,47,48]. Genomic alteration

profiles are available through the Rembrandt database (http://

rembrandt.nci.nih.gov/).

Considering alterations of copy numbers (CN), we defined an

amplification if log2 CN - 1.0.1 and a deletion if log2 CN -

1,20.1.

Interaction Network
We utilized human protein-protein interaction data from large-

scale high-throughput screens [49,50,51] and several interaction

databases [52,53,54,55] totaling 93,178 interactions among 11,691

genes. As a reliable source of experimentally confirmed protein-

DNA interactions, we used 6,669 interactions between 2,822

transcription factors and structural genes from the TRED

database [56]. As for phosphorylation events between kinases

and other proteins we used 5,462 interactions between 1,707

human proteins from the networKIN [57,58] and phosphoELM

database [59]. Pooling all interactions we obtained a network of

11,969 human proteins that are connected by 103,966 links.

Selection of Target Genes
We identified genes that are differentially expressed in the

disease cases compared to the non-disease controls in each case.

Specifically, we normalized gene expression values as a Z-score,

utilizing mean and standard deviation of gene expression values in

the non-disease control cases. We considered a gene differentially

expressed if the normalized gene expression value of the gene had

a p-value ,0.01 in the given case using a Z-test.

We chose a representative set of target genes by formulating the

problem as a minimum multi-set cover. First, we defined a

bipartite graph B(T, S) between genes T and disease cases S by

adding edges between genes g and cases s if and only if gene g was

differentially expressed in case s. We constructed a multi-set cover

instance SC = {B(T, S),a, b} where a represented the number of

times that a case needed to be covered, and b was the maximum

number of outliers. In other words, all but b cases needed to be

covered at least a times in the output cover. The problem to

choose a minimum number of genes, satisfying the constraints is

NP-hard (i.e., computationally not feasible), prompting us to design

a greedy algorithm. The pseudocode of the corresponding

algorithm is shown in the Text S1. We demanded that a case

needed to be covered at least a = 55 times with a maximum of

b = 3 outliers, obtaining 74 target genes.

eQTL Mapping
We utilized a set of loci L = {l1, l2,…, lm} where each locus li

was characterized by the corresponding copy number cni,j in each

case j, CNi = {cni,1, cni,2,…, cni,n}. Since copy numbers of nearby

loci tend to be highly correlated we significantly reduced the

number of loci by a local clustering. Specifically, for a potential tag

locus tlk, we greedily accumulated all consecutive loci, ensuring

that the Pearson’s correlation coefficient of CNk and CNi at any

locus li in the region was . hTL = 0.9. Tag loci and associated

regions can be computed in time linear to the number of loci.

Note, that adjacent regions may overlap and a gene may belong to

more than one region. Given a set of tag loci TL = {tl1, tl2,…, tlm},

we identified candidate causal loci by associating copy number

alterations with expression profiles of target genes. Given a set of

target genes TG and tag loci TL, we calculated significant

associations by a linear regression between the normalized

expression values of gene tgi, E(tgi), and copy numbers of tag locus

tlj, CN(tlj). For each target gene tgi, TL ið Þ(TLincluded all tag loci

with p,0.01. We considered a tag loci tlj associated with tgi if tlj [
TL(i).The pseudocode for selecting tag loci and eQTL mapping is

presented in the Text S1.

Solution of the Electric Circuit Problem
The circuit flow algorithm is based on the well-known analogy

between random walks and electronic networks where the amount

of current entering a node or an edge in the network is

proportional to the expected number of times a random walker

will visit the node or edge. Let G = (N, E) represent a gene

network where N is a set of genes and E is a set of molecular

interactions. Let vector I = [I(e) for e M E] denote current passing

through the edges, and vector V = [V(n) for n M N] holds variables
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of voltage at the nodes. For a given tag locus, let C be the set of

candidate genes located in its genomic region. Vector X = [X[c]

for c M C] denotes the current leaving the candidate genes. For an

edge e = (u,v) connecting genes u and v, we calculated the gene

expression correlations corr(u, tg) and corr(v, tg) between both genes

and target gene tg. We defined the conductance of edge e, w(e) as

the mean of corr(u, tg) and corr(v, tg). As such, we ensured that a

single non-correlated node reduced but not completely interrupted

the current flow, while a cluster of non-correlated nodes put a

considerable resistance to the current flow. Ohm’s law is defined as

Id|IzP|V~0 ð1Þ

where Id is an |E|6|E| identity matrix, and O is a zero matrix. P

is an |E| 6|N| matrix and P(e, n) = w(e) if n = v, -w(e) if n = u,

and 0 otherwise. Kirchhoff’s current law is

Q|IzR|X~T ð2Þ

where Q is an |N| 6|E| matrix, and Q(n, e) = 1 if n = u, 21 if

n = v, and 0 otherwise. R is an |N|6|C| matrix where R(n, c) = 1

if n = c, and 0 otherwise. T is an |N|61 vector where T(n) = 1 if

n is the target gene tg, and 0 otherwise.

Finally, we set the voltage of all genes in C to be 0 so that all

current flowed into the candidate genes and there is no current

flow between candidate genes, defined as

S|V~0 ð3Þ

where S is a |C|6|N| matrix and S(c, n) = 1 if n = c, and 0

otherwise.

The set-up of such a linear system implicitly considered all

interactions undirected and stipulated that each interaction can

have a regulatory effect on the expression of a target gene. In order

to obtain more biologically meaningful results, we demanded that

direct regulation activity on the expression of target genes is

mediated by transcription factors. Therefore, we determined paths

where target genes interacted with transcription factors only. In

addition, we also accounted for directions of protein-DNA

interactions and phosphorylation events. Since linear program-

ming approaches to solve such a directed model [21] required

extreme computational resources, we implemented a simple

heuristic: after solving the linear system, we removed edges that

were used in the wrong direction. We repeated this procedure until

only a small number of directed edges were used in the wrong

direction (see Text S1 for details). We chose a threshold of 100,

which was approximately 0.1% of the total number of edges and

found that this heuristic provided a reasonable approximation to

the linear programming approach.

Empirical P-Values
Since the number of genes located in each region varied from 0

to several hundreds, the amount of current that flows to genes

cannot be compared directly among different loci to prioritize

genes. Given the results of the circuit flow algorithm, an empirical

p-value for each pair of a target and a causal gene was estimated,

utilizing 30 random networks. Random networks were generated

by swapping edges while preserving node degrees to avoid

potential biases toward hub nodes. Assuming that each edge had

a unit conductance, we ran the circuit flow algorithm in each

random network for the same set of genes and computed the

amount of current flowing into each gene located in the tag locus.

A normal distribution was fitted to the current values in the

random networks, and empirical p-values were computed using a

Z-test.

For each locus and a set of genes in the associated region, we

only considered genes receiving current of at least 70% of the

maximum current among all genes in the region. Utilizing the

permutation method, we selected candidate causal genes for each

target gene if the empirical, gene specific p,0.05. On average, we

found a total of 701 causal genes for all 74 target genes (for details

of parameter settings, please see Text S1).

Identifying Dysregulated Pathways
Let region(cg) be the region that contains a causal gene cg. Recall

that regions may overlap, and therefore a gene can be part of more

than one region. Let regionmax(cg, tg) and tlmax(cg, tg) be the region and

tag locus that harbored causal gene cg and have the most

significant p-value among all the current flow solutions from a

target gene tg to regions in region(cg). Utilizing a current flow

solution Sol(tg, tlmax(cg, tg)) from tg to tlmax(cg, tg), we first removed any

nodes with empirical p-value .0.05 from the network. Subse-

quently, we determined a maximum current path from tg to cg

which was defined as a simple path P (tg, cg) = (tg, g1, g2,…, cg) such

that mingi[P(tg,cg)I(gi) was maximized where I(gi) was the total

current passing through the gene gi (please see Text S1 for

algorithmic details). We computed a path for each pair of a final

causal gene and a target gene affected by the causal gene.

Selecting a Final Set of Causal Genes
One of our primary goals was to identify a set of causal genes

that explains (almost) all disease cases. Given a set of candidate

causal genes and their corresponding copy number variations we

identified a subset of common causal genes that explains the

disease cases. Specifically, a causal gene cgk explains a case si if (i)

the tag locus including the gene has copy number alterations in

case si and (ii) there exists a nonempty set of target gene(s), TG(cgk,

si), which are affected by cgk (i.e., with P,0.05) and differentially

expressed in case si. The weight between a causal gene and a case,

w(k,j) is defined as w(k,j) = |TG(cgk, si)|.

A weighted bipartite graph WB(C, S) between a set of candidate

causal genes C and disease cases S can be constructed by adding

edges between gene cgk and case si if and only if gene cgk explains a

case si. For a subset of candidate causal genes C0 and a case s, let

W(C0, s) be the total number of target genes covering s by the

genes in C0, W (C0,s)~D
S

c[C0
TG(c,s)D. We considered a case as

explained if the total weight covering the case exceeds a certain

threshold. As in the preprocessing in the first step, we wanted to

explain all cases (allowing a few outliers) with minimum number of

causal genes (Fig. 1D). The problem can be formulated as a

variant of minimum weighted multi-set cover problem. Consider an

instance WSC = {WB(C, S), c, d} where WB(C, S) is a weighted

bipartite graph between causal genes C and cases S. We wanted to

choose a subset of genes C’ from C such that for each case s except

d cases, W(C’, s) $ c. Since a very simple version of the multi-set

cover problem (unweighted without outliers) is NP-hard, we

designed an algorithm, using a greedy approach to choose a subset

of causal genes. Repeatedly, we computed the total weight that can

be covered by choosing a gene and selected a gene with maximum

additional total weight until the constraints are satisfied (See Text

S1 for algorithmic details). Recall that target genes were chosen so

that each disease case (except 3 cases) had at least 55 target genes

in the first step. As some target genes may not cover the same

disease case due to the stricter definition in this step, we found that

d = 21 disease cases had less than 50 target genes covering the

cases. Therefore, we required an accumulated weight between the
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set of causal genes and cases W(C’, s) $ c = 50 in all but d = 21

cases and selected 128 final causal genes.

Computational Costs
The computationally most expensive component in our

algorithm was the circuit flow algorithm. Due to the large size

of the human molecular interaction network and the large number

of potential causal loci per target gene, the approach required

significant computational resources to find a solution to the circuit

flow problem and calculate empirical p-values using a permutation

method. On average, it took approximately 60-80 hours per target

gene to compute solutions for all associated loci (including

permutation tests). We used the computing cluster at the NCBI

for our computations, allowing us to run several dozens of

computations in parallel. In addition, we adapted various

optimization techniques to expedite the procedure [60].
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