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Understanding mechanisms underlying human gene
expression variation with RNA sequencing
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Jean-Baptiste Veyrieras1, Matthew Stephens1,4, Yoav Gilad1 & Jonathan K. Pritchard1,3

Understanding the genetic mechanisms underlying natural vari-
ation in gene expression is a central goal of both medical and
evolutionary genetics, and studies of expression quantitative trait
loci (eQTLs) have become an important tool for achieving this
goal1. Although all eQTL studies so far have assayed messenger
RNA levels using expression microarrays, recent advances in RNA
sequencing enable the analysis of transcript variation at unpreced-
ented resolution. We sequenced RNA from 69 lymphoblastoid cell
lines derived from unrelated Nigerian individuals that have been
extensively genotyped by the International HapMap Project2. By
pooling data from all individuals, we generated a map of the tran-
scriptional landscape of these cells, identifying extensive use of
unannotated untranslated regions and more than 100 new putat-
ive protein-coding exons. Using the genotypes from the HapMap
project, we identified more than a thousand genes at which genetic
variation influences overall expression levels or splicing. We dem-
onstrate that eQTLs near genes generally act by a mechanism
involving allele-specific expression, and that variation that influ-
ences the inclusion of an exon is enriched within and near the
consensus splice sites. Our results illustrate the power of high-
throughput sequencing for the joint analysis of variation in
transcription, splicing and allele-specific expression across
individuals.

Studies of gene expression variation in humans have yielded sev-
eral insights into the genetic basis of natural variation in mRNA
levels. In particular, much variation in gene expression levels and
alternative splicing is heritable3,4, and polymorphisms that affect
the expression level of a gene are most often found near the gene
itself, especially near the transcription start site5–7.

Until now, all studies of gene expression variation in humans have
been performed using microarrays, which generally measure express-
ion levels using one or a few probes targeting particular parts of each
gene. In contrast, the recent development of RNA sequencing (RNA-
Seq) protocols using high-throughput sequencing platforms allows
for relatively unbiased measurements of expression levels across the
entire length of a transcript8. This technology has several advantages,
including the ability to detect transcription of unannotated exons,
measure both overall and exon-specific expression levels, and assay
allele-specific expression.

To study variation in transcript levels at high resolution, we
sequenced RNA from lymphoblastoid cell lines (LCLs) derived from
69 Nigerian individuals generated as part of the International
HapMap project2. Specifically, we sequenced complementary DNA
libraries prepared from the polyadenylated fraction of RNA from
each individual in at least two lanes of the Illumina Genome
Analyser 2 platform, and mapped reads to the human genome using
MAQ v0.6.8 (ref. 9). In total, we generated 1.2 billion reads of either
35 or 46 base pairs (bp), of which 964 million reads mapped uniquely

to the genome or to exon–exon boundaries (Supplementary Material
and Supplementary Table 1). As an initial approximation, we esti-
mated the expression level of a gene as the fraction of all sequencing
reads that mapped to its exons (including exon–exon boundaries)
divided by the ‘mappable’ length of the gene (Supplementary
Material). Spearman correlations between our gene expression esti-
mates and estimates derived from microarray data (for the 53 cell
lines in common between our study and a previous study using exon
microarrays10) ranged from 0.60 to 0.78 (Supplementary Fig. 3).

Although our main aim was to compare gene expression levels
across individuals, we first pooled all the data to examine the com-
pleteness of current gene annotations (Supplementary Fig. 1). This
pooled data set of 964 million uniquely mapped reads represents an
order of magnitude deeper sequencing coverage of a tissue than any
previous RNA-Seq analysis. Of all reads that mapped uniquely to the
genome, 86% mapped within known exons. We examined regions of
transcription outside annotated exons with respect to conservation
to enrich for those regions with truly functional transcription
(Supplementary Material and Supplementary Fig. 5). Overall, 4,031
regions of the genome unannotated at present show evidence of
transcription and overlap highly conserved regions, as judged by
analysis of an alignment of 28 vertebrate genomes11. (We define
‘unannotated’ as absent from gene models in the Ensembl, UCSC,
Vega and Refseq databases.) We next used the sequence reads to
examine these regions for evidence of splicing either to known exons
or to other unannotated transcribed regions. We identified 992
regions (24% of the total) that show evidence of being part of spliced
transcripts. Most of these (696) are spliced to known transcripts,
suggesting that they are unannotated exons of known genes
(Supplementary Material and Supplementary Fig. 6). In most cases
the physical locations of the new exons spliced to known genes sug-
gest that they may be untranslated regions, rather than new protein-
coding exons. We next examined the full set of expressed, conserved
regions for patterns of conservation consistent with a protein-coding
function, using a test of the non-synonymous to synonymous sub-
stitution rate (the dN/dS ratio). We identified 115 exons with strong
evidence that they are protein-coding (at a false discovery rate (FDR)
of 1%). One example of such an exon is presented in Fig. 1a, which
shows a previously unannotated protein-coding exon in the tran-
scription factor ZSWIM4 (dN/dS likelihood ratio 298;
P , 1 3 1027). Overall, these results indicate that, in comparison
to protein-coding exons, untranslated regions (UTRs) are relatively
poorly annotated in current databases.

We looked for further support that these 4,031 unannotated tran-
scribed regions are indeed real exons. To do so, we examined the
expression of such regions in RNA-Seq data sets from several human
tissues12, as well as a data set from chimpanzee LCLs (A.A.P. and Y.G.,
unpublished data). We found that putative exons are observed in
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chimpanzee LCLs at approximately the same rate as annotated exons
(overall, 84% of putative new exons are also observed in chimpanzee
LCLs). However, these regions are observed at a lower rate than
annotated exons in the different human tissues, with the notable
exceptions of lymph node and breast tissue (Fig. 1b and
Supplementary Fig. 7). We interpret this as evidence that transcrip-
tion of these regions is indeed conserved but more tissue-specific
than that of previously annotated exons, providing a partial explana-
tion for their absence from current gene annotations.

We used the 70 million sequence reads that did not map to the
genome to find new polyadenylation cleavage sites, by identifying
reads ending in strings of As or Ts and thus potentially originating
in the poly-A tail (Supplementary Material). Using this approach, we
identified 7,926 putative cleavage sites supported by more than one
sequence read; of these, 45% fall within 10 bases of an annotated
cleavage site. To test whether these predicted cleavage sites represent
true sites, we calculated the distribution of the hexamer AATAAA,
the binding site for the CPSF polyadenylation factor, in the 50 bases
upstream of the predicted sites (this hexamer is present between 10
and 30 bases upstream of most known polyadenylation cleavage
sites13). There is a 32-fold enrichment of this hexamer between 15
and 30 bases upstream of our predicted sites (Supplementary Fig. 8).
An enrichment of this hexamer exists regardless of the distance of the
prediction from all known cleavage sites (Fig. 1d). We defined a set
of 3,481 high-confidence cleavage sites that are supported by more
than one sequencing read and contain an upstream match to the

CPSF hexamer. Median RNA-Seq read depth at bases upstream of
these sites is markedly increased relative to bases downstream, sup-
porting the contention that these represent true cleavage sites
(Supplementary Fig. 9). On the basis of the enrichment of the
CPSF motif, we estimate the FDR for the most distant class of sites
(the 252 predictions falling more than 500 bases from a known cleav-
age site and having a match to the CPSF-binding site) as 13%
(Supplementary Material). In many cases, the identified cleavage site
lies hundreds of bases downstream of the annotated cleavage site; as
an example, in Fig. 1c we show that a polyadenylation cleavage site
used in the gene DYNLL2 lies roughly 2 kilobases (kb) beyond the
annotated end of the gene, resulting in an extended 39 UTR. Because
UTRs contain important regulatory elements14, and 39 UTR lengths
are subject to precise regulatory control15,16, we suggest that the
extensive use of unannotated UTRs in these cell lines has functional
importance in gene regulation.

We next turned to identifying polymorphisms that influence
expression levels of both previously annotated genes and unannotated
exons (Supplementary Fig. 2). It is now clear that measurements of
gene expression levels from RNA-Seq are correlated with measures of
absolute expression level (as assayed by quantitative PCR) across a wide
dynamic range12,17,18, suggesting that read counts alone could be used to
assess differential expression between samples without the need for
extensive processing8. However, we found that we could increase the
power to detect eQTLs with a series of normalization and correction
steps (Supplementary Material). Specifically, we performed an explicit
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Figure 1 | Annotating genes with RNA-Seq. a, Example of a new protein-
coding exon identified by RNA-Seq. LR, likelihood ratio. For each base in a
window, we plot the average rate at which it is covered in our data. Light blue
denotes bases annotated as exonic in Ensembl, black indicates bases that are
not. In the gene model, blue boxes represent annotated exons from Ensembl,
black lines represent annotated introns. In red is the position of an inferred
new protein-coding exon. Lines represent the positions of splice junctions
predicted from the RNA-Seq data and supported by more than five
sequencing reads; in red are those absent from current databases. Below each
junction is the number of sequencing reads supporting the junction. b, New
exons are more tissue-specific than annotated exons. For each exon, we
estimated the fraction of either new or annotated exons observed in each
tissue profiled previously12, as well as in chimpanzee LCLs (red). The grey
line represents what would be expected if both annotated and unannotated

exons were observed at the same rate. AD, adipose; BR, brain; BS, breast;
BT, BT cell line; CO, colon; HM, HME cell line; HR, heart; LN, lymph node;
LV, liver; SK, skeletal muscle; TS, testes. Data are for exons expressed at a
mean rate in human LCLs between 0.1 and 0.3 reads per million; for other
expression rates see Supplementary Fig. 7. c, Example of a new
polyadenylation site identified by RNA-Seq. Labelled as in a. Red line shows
the position of reads identified as originating in the poly-A tail. Grey line
represents the position of the predicted cleavage site. d, Binding sites for
CPSF are enriched upstream of predicted polyadenylation sites. We divided
predicted polyadenylation cleavage sites (supported by at least two
sequencing reads) into classes based on their proximity to annotated
cleavage sites. For each site, we extracted the upstream 50 bases, and plot, for
each position, the fraction of sequences matching the consensus AATAAA
hexamer.
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correction for noise introduced by technical confounders such as GC
content (Supplementary Material and Supplementary Fig. 12), as well
as a correction using principal components analysis (PCA) that
accounts for unmeasured confounders19,20.

For each gene, we evaluated the association between overall gene
expression level (after normalization) and all 3.8 million single nuc-
leotide polymorphisms (SNPs) genome-wide (using the genotypes
from phases II and III of HapMap project). Consistent with previous
reports6,21, virtually all SNPs with strong association signals lie near
the corresponding gene (Supplementary Material). We then focused
on SNPs in a candidate region spanning 200 kb on either side of each
gene. At a gene-level FDR of 10% (corresponding to P 5 2.4 3 1025),
there are 929 genes or putative new exons with ‘local’ eQTLs (within
200 kb), representing 4.6% of annotated genes and 2.3% of putative
new exons. The RNA-Seq data enable visualization of the effect of an
SNP on the entire gene; as an example, we show in Fig. 2a the evid-
ence for an eQTL affecting the expression level of TSP50 (also known
as PRSS50). In agreement with previous reports7, we found that SNPs
that affect the overall expression level of a gene tend to fall extremely
close to the gene; we estimate that 90% of SNPs that influence
the expression level of a gene fall within 15 kb of the gene
(Supplementary Fig. 13).

We evaluated whether our results replicate eQTLs previously iden-
tified in these samples using expression microarrays. To do so, we used
the gene expression data from a subset of 53 individuals included in
both our data set and a data set collected using Affymetrix exon
microarrays10. Of the 138 SNPs identified as eQTLs at a FDR of
10% using the array data, 70% achieve nominal significance
(P , 0.05, one-sided test) in our data, and the overwhelming majority
(93%) show a trend in the same direction (Supplementary Fig. 14).
We further compared the eQTLs identified in this study to those
identified using RNA-Seq in a European population22; there is a

10–40-fold enrichment of significant eQTLs in the Nigerian sample
among the top 500 associations discovered in the European sample
(Supplementary Material and Supplementary Fig. 16). Taken
together, these results indicate that the eQTLs we have identified are
indeed due to replicable genetic effects.

We next considered the mechanism by which eQTLs act. The term
‘cis-eQTL’ has been used to describe associations between genes and
nearby polymorphisms5,7,21. However, this term suggests a mech-
anism by allele-specific expression that could previously only be
examined with independent experiments23,24. The same RNA-Seq
data, however, can be used both to detect eQTLs and to assay
allele-specific expression. We used the sequencing reads to determine
whether heterozygotes for eQTLs show evidence of differences in
expression levels from the two alleles, using the phased HapMap data
to classify haplotypes as carrying the alleles associated with low- or
high-expression levels. Out of 929 genes with putative cis-eQTLs, 222
contain informative exonic SNPs. Using these SNPs, we classified
individual sequence reads as originating from the low- or high-
expressing haplotype. Of these genes, 88% have a fraction of reads
from the high-expressing haplotype greater than 0.5 (P , 2 3 10216,
binomial test; Fig. 2b), providing direct evidence that local eQTLs
typically act by an allele-specific mechanism, namely the modulation
of activity of cis-regulatory elements. Further support for this mech-
anism comes from the observation that the fraction of sequencing
reads from the high-expressing haplotype (in heterozygotes alone)
correlates with the strength of the eQTL (r 5 0.52, P , 2 3 10216;
Fig. 2c). The correlation of the two independent estimates of the
allelic effect is highest for the genes with the greatest read depth,
and thus the most confidence in the predicted effect sizes
(Supplementary Fig. 17).

Finally, we turned to identifying SNPs that influence the regulation
of transcript isoform levels (Supplementary Fig. 2). For each exon of
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Figure 2 | Loci affecting gene expression levels. a, Example of RNA-Seq
data indicative of an eQTL. Plotted is the average rate at which each base in a
window surrounding TSP50 was sequenced in our data. To calculate this, we
stratified individuals based on their genotype at rs7639979. Panels are
labelled according to the genotype, with the number of individuals in
parentheses. Bases overlapping known exons from Ensembl are in blue; non-
exonic bases are in black. In the gene model below, exons from Ensembl are
marked by blue boxes and introns with red lines; transcription of this gene
occurs from the minus strand. b, Allele-specific expression at eQTLs. For
each eQTL, we identified all the heterozygous individuals who also have
heterozygous exonic SNPs, and estimated the fraction of reads coming from

the high-expression (‘1’) haplotype using a beta-binomial model
(Supplementary Material). Plotted is the histogram of estimated means; the
black line is at 0.5, the expected fraction under the null. c, Correlation
between effect sizes estimated from two methods. For each eQTL where we
also have information about allele-specific expression, we estimated the
allelic effect size by both an eQTL study and an allele-specific expression
study (Supplementary Material). These estimates are statistically
independent. Plotted for each gene is the estimated fraction of sequencing
reads from the high-expression haplotype against the fraction predicted
from the eQTL effect size. Red is the best-fit regression line, grey is a perfect
correlation.
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each gene, we treated the fraction of reads mapped to that exon (of all
the reads in the gene) as a quantitative trait. This summarization
effectively controls for variation in expression levels of the gene
across samples. We then performed linear regressions of these frac-
tions (after normalization and correction for confounding variables)
against all polymorphisms within 200 kb of the gene. At a FDR of
10%, we found 187 genes with significant associations, indicating
putative splicing QTLs (sQTLs). An example is shown in Fig. 3a, in
which an SNP in the 39 splice site of the terminal exon of OAS1
influences the inclusion of that exon. With the RNA-Seq data, we
can precisely infer the effects of the disruption of this splicing signal.
In this case, disruption of the 39 splice site leads to upregulation of
two alternative isoforms—one isoform that uses a cryptic 39 splice
site present upstream of the SNP, and another that excludes the final
exon altogether and terminates at an upstream polyadenylation site
(Fig. 3b).

We proposed that, as in the example described earlier, the mech-
anism of many of these associations acts through disruption of the
splicing machinery. To test this, we extended a Bayesian hierarchical
model used previously7 to include exon-specific effects (Supplemen-
tary Material). This model allows us to estimate the odds ratio for
different types of SNPs to affect splicing. First, we considered the
binding sites for the U1 small nuclear ribonucleoprotein (snRNP)
and U2AF splice factor (of which the canonical splice sites are a
part25); we found that SNPs throughout these binding sites are highly
enriched among sQTLs relative to non-splice site intronic SNPs (log
odds ratio of 7; 95% confidence interval [4.5, .20]; Fig. 3c). We

considered whether SNPs within the canonical 2 bp of the splice site
alone are enriched for sQTLs; we find that they are (log odds ratio of
10.5; 95% confidence interval [3.8, .20]; Supplementary Figs 18 and
19), in contrast to previous studies using exon microarrays26.
Furthermore, SNPs within the spliced exon itself are also significantly
enriched among sQTLs and, as expected, non-genic SNPs are mark-
edly under-represented among sQTLs (Fig. 3c).

In summary, our results demonstrate the power of RNA-Seq data
for genome annotation and analysis of variation in splicing and
expression levels across individuals. Studies of variation in gene
expression using microarrays have provided insight into the mech-
anism of action of loci associated with disease26,27; the increased
sensitivity to detect variation in splicing and identify new transcripts
provided by RNA-Seq will greatly enhance these efforts.

METHODS SUMMARY

cDNA libraries were prepared and sequenced as described previously28. All reads

were mapped to the genome using MAQ v0.6.8 (ref. 9). For the purposes of

mapping, we defined gene models according to the Ensembl database. For defin-

ing exons or polyadenylation sites as ‘new’, we compared to annotations in the

Ensembl, UCSC, RefSeq and Vega databases, as downloaded from UCSC on 20

April 2009. We summarized the expression level of the gene as the number of

reads mapping to the exons of the gene divided by the total number of reads in

the lane, and averaged several lanes of the same individual. We quantile-normal-

ized these fractions, and performed a linear regression of the expression mea-

surements on the first 16 principal components of the expression matrix. The

residuals from this regression were quantile-normalized and treated as the

expression level of each gene. Release 27 HapMap genotypes were obtained from
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Figure 3 | Loci affecting isoform expression. a, Example of RNA-Seq data
indicative of an sQTL. Plotted is the average rate at which each base in a
window surrounding the terminal two exons of OAS1 is sequenced in our
data; individuals were stratified according to their genotype at rs10774671.
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models inferred to result from splicing of transcripts from the haplotype
carrying either the G or A allele at rs10444671. Gene models are numbered
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http://www.hapmap.org, and missing values were imputed using Bimbam29.
Standard linear regressions between expression levels and posterior mean

genotypes were performed in R. To detect allele-specific expression, we counted

reads falling on each allele of exonic heterozygous SNPs, after excluding SNPs

showing mapping biases by simulation30. We estimated the fraction of reads

coming from each haplotype with a beta-binomial model. To identify sQTLs,

the fraction of reads in a gene that falls in a given exon was treated as a quant-

itative trait. This fraction was quantile-normalized, confounding effects were

removed by PCA, and linear regression was performed as for overall gene

expression. The hierarchical model for exon effects was based on that described

previously7. For full methods, see Supplementary Information. An overview of

the methods and results is provided in Supplementary Figs 1 and 2.
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